The bioorthogonal inverse electron demand Diels-Alder cycloaddition has been harnessed to create an effective and modular pretargeted PET imaging strategy for cancer. In this protocol, the steps of this methodology are described in the context of a model system employing the colorectal cancer targeted antibody huA33 and a 64Cu-labeled radioligand.
Due to its multi-day radioactive half-life and favorable decay properties, the positron-emitting radiometal 89Zr is extremely well-suited for use in antibody-based radiopharmaceuticals for PET imaging. In this protocol, the bioconjugation, radiosynthesis, and preclinical application of 89Zr-labeled antibodies will be described.
This protocol describes a new intraoperative imaging technique that uses a ruthenium complex as a source of chemiluminescent light emission, thereby producing high signal-to-noise ratios during in vivo imaging. Intraoperative imaging is an expanding field that could revolutionize the way that surgical procedures are performed.
This protocol describes the synthesis and characterization of a trans-cyclooctene (TCO)-modified antibody and a 177Lu-labeled tetrazine (Tz) radioligand for pretargeted radioimmunotherapy (PRIT). In addition, it details the use of these two constructs for in vivo biodistribution and longitudinal therapy studies in a murine model of colorectal cancer.
In this protocol, we will describe the synthesis of PODS, a phenyoxadiazolyl methyl sulfone-based reagent for the site-selective attachment of cargos to the thiols of biomolecules, particularly antibodies. In addition, we will describe the synthesis and characterization of a PODS-bearing bifunctional chelator and its conjugation to a model antibody.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。