To improve our knowledge of cellular and molecular neotissue formation, a murine model of the TEVG was recently developed. The grafts were implanted as infrarenal vena cava interposition grafts in C57BL/6 mice. This model achieves similar results to those achieved in our clinical investigation, but over a far shortened time-course.
In order to understand the cellular and molecular mechanisms underlying neotissue formation and stenosis development in tissue engineered heart valves, a murine model of heterotopic heart valve transplantation was developed. A pulmonary heart valve was transplanted to recipient using the heterotopic heart transplantation technique.
This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.
This protocol describes a net mold-based method to create three-dimensional scaffold-free cardiac tissues with satisfactory structural integrity and synchronous beating behavior.
关于 JoVE
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。