Entrar

Johns Hopkins Hospital

4 ARTICLES PUBLISHED IN JoVE

image

Medicine

Implantation of Inferior Vena Cava Interposition Graft in Mouse Model
Yong-Ung Lee 1, Tai Yi 1, Shuhei Tara 1, Avione Y. Lee 1, Narutoshi Hibino 1, Toshiharu Shinoka 2, Christopher K. Breuer 1,3
1Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, 2Department of Cardiothoracic Surgery, Nationwide Children's Hospital, 3Pediatric Surgery, Nationwide Children's Hospital

To improve our knowledge of cellular and molecular neotissue formation, a murine model of the TEVG was recently developed. The grafts were implanted as infrarenal vena cava interposition grafts in C57BL/6 mice. This model achieves similar results to those achieved in our clinical investigation, but over a far shortened time-course.

image

Medicine

Transplantation of Pulmonary Valve Using a Mouse Model of Heterotopic Heart Transplantation
Yong-Ung Lee 1, Tai Yi 1, Iyore James 1, Shuhei Tara 1, Alexander J. Stuber 1, Kejal V. Shah 1, Avione Y. Lee 1, Tadahisa Sugiura 1, Narutoshi Hibino 2, Toshiharu Shinoka 1, Christopher K. Breuer 1,3
1Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, 2Cardiothoracic Surgery, Nationwide Children's Hospital, 3Pediatric Surgery, Nationwide Children's Hospital

In order to understand the cellular and molecular mechanisms underlying neotissue formation and stenosis development in tissue engineered heart valves, a murine model of heterotopic heart valve transplantation was developed. A pulmonary heart valve was transplanted to recipient using the heterotopic heart transplantation technique.

image

Bioengineering

Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting
Chin Siang Ong 1,2, Takuma Fukunishi 1, Andrew Nashed 1, Adriana Blazeski 3, Huaitao Zhang 1, Samantha Hardy 1, Deborah DiSilvestre 2, Luca Vricella 1, John Conte 1, Leslie Tung 3, Gordon Tomaselli 2, Narutoshi Hibino 1
1Division of Cardiac Surgery, Johns Hopkins Hospital, 2Division of Cardiology, Johns Hopkins Hospital, 3Department of Biomedical Engineering, Johns Hopkins University

This protocol describes 3D bioprinting of cardiac tissue without the use of biomaterials. 3D bioprinted cardiac patches exhibit mechanical integration of component spheroids and are highly promising in cardiac tissue regeneration and as 3D models of heart disease.

image

Bioengineering

A Net Mold-based Method of Scaffold-free Three-Dimensional Cardiac Tissue Creation
Yang Bai 1,2, Enoch Yeung 2, Cecillia Lui 2, Chin Siang Ong 2, Isaree Pitaktong 2, Chenyu Huang 2, Takahiro Inoue 2, Hiroshi Matsushita 2, Chunye Ma 2, Narutoshi Hibino 2
1Department of Cardiac Surgery, The First Hospital of Jilin University, 2Division of Cardiac Surgery, Johns Hopkins Hospital

This protocol describes a net mold-based method to create three-dimensional scaffold-free cardiac tissues with satisfactory structural integrity and synchronous beating behavior.

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados