登录

According to the molecular orbital (MO) model, benzene has a planar structure with a regular hexagon of six sp2 hybridized carbons. As shown in Figure 1, each carbon is bonded to three other atoms with C–C–C and H–C–C bond angles of 120°. The C–H bond length is 109 pm, and the C–C bond length is 139 pm which is midway between the single bond length of sp3 hybridized carbons (154 pm) and sp2 hybridized carbons (133 pm).

Figure1

The carbon atoms also have an unhybridized 2p atomic orbital with one electron, perpendicular to the plane of the ring, which overlaps with the p orbitals of neighboring carbons, forming a continuous loop of π electrons above and below the plane of the ring. According to molecular orbital (MO) theory, these six 2p orbitals combine to form six π cyclic molecular orbitals (MOs) ψ1, ψ2, ψ3, ψ4, ψ5, and ψ6, as shown in the figure below. Among them, ψ1, ψ2, and ψ3 are bonding, whereas ψ4, ψ5 and ψ6 are antibonding MOs. Generally, the energy of the MOs and the number of nodes increases from ψ1 to ψ6, whereas the bonding interaction decreases. However, these MOs of cyclic systems differ from the linear systems such as 1,3-butadiene by having two degenerate MOs.

Figure2

The lowest energy bonding MO, ψ1, has no nodes where all the orbitals are in phase. The next lowest MO has one node and can be represented in two ways, where the nodal plane passes through a bond or an atom. These two bonding MOs are degenerate and represented as ψ2 and ψ3. Similarly, the two nodal planes can pass through bonds or atoms, providing two degenerate antibonding MOs of ψ4 and ψ5. The final MO, ψ6, has the highest energy, with three nodal planes representing the out-of-phase combination of all p orbitals.

The six π electrons that form a closed shell of delocalized π electron density above and below the plane of the ring occupy the three bonding MOs, ψ1, ψ2, and ψ3, whose energies are lower than that of the isolated p orbital, thus leading to unusual stability of benzene.

Tags
BenzeneMolecular Orbital ModelPlanar StructureSp2 Hybridized CarbonsC C C Bond AnglesC H Bond LengthC C Bond Length2p Atomic OrbitalsElectronsCyclic Molecular OrbitalsBonding MOsAntibonding MOsDegenerate MOsElectron DelocalizationStability Of Benzene

来自章节 17:

article

Now Playing

17.5 : Structure of Benzene: Molecular Orbital Model

Aromatic Compounds

8.1K Views

article

17.1 : 芳香族化合物:概述

Aromatic Compounds

9.3K Views

article

17.2 : 具有单个取代基的芳香族化合物的命名法

Aromatic Compounds

7.0K Views

article

17.3 : 具有多个取代基的芳香族化合物的命名法

Aromatic Compounds

6.8K Views

article

17.4 : 苯的结构:Kekulé 模型

Aromatic Compounds

7.7K Views

article

17.6 : 芳香性标准和 Hückel 4n + 2 规则

Aromatic Compounds

9.2K Views

article

17.7 : π MO 的 Hückel 规则图:Frost Circle

Aromatic Compounds

4.1K Views

article

17.8 : 适用于不同共轭系统的 Frost Circle

Aromatic Compounds

2.5K Views

article

17.9 : 芳烃阴离子:结构概述

Aromatic Compounds

2.5K Views

article

17.10 : 芳烃阳离子:结构概述

Aromatic Compounds

2.5K Views

article

17.11 : 五元杂环芳香族化合物:概述

Aromatic Compounds

3.5K Views

article

17.12 : 芳香族化合物的 NMR 波谱

Aromatic Compounds

4.2K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。