登录

Aldol condensation is an important route in synthetic organic chemistry used to generate a new carbon–carbon bond under basic or acidic conditions. The aldol condensation reaction presented in Figure 1 constitutes an aldol addition reaction followed by the dehydration process.

Figure1

Figure 1. The general aldol addition reaction of aldehydes.

Aldol addition reactions are reversible and are of two types: self-addition and crossed-addition. Combining two identical carbonyl compounds is called self-addition. As shown in Figure 2, the reaction between two different carbonyl compounds is called crossed-addition. Of the two carbonyl compounds involved in the reaction, one functions as a nucleophile and the other as an electrophile.

Figure2

Figure 2. The crossed aldol addition reaction of aldehydes.

The two types of aldol addition reactions produce a β-hydroxy carbonyl as the aldol addition product. While a self-addition reaction yields a single aldol product, a crossed-addition results in a mixture of products, decreasing the reaction's usefulness in organic chemistry. Accordingly, the choice of reactants is paramount in defining the efficacy of the reaction.

Figure 3 depicts the subsequent dehydration of a β-hydroxy carbonyl compound under suitable reaction conditions to form the corresponding condensation product.

Figure3

Figure 3. The dehydration reaction of aldols.

Tags

Aldol CondensationSynthetic Organic ChemistryCarbon carbon BondAldol AdditionReversible ReactionsSelf additionCrossed additionCarbonyl CompoundsNucleophileElectrophilehydroxy CarbonylDehydration ReactionReaction Conditions

来自章节 15:

article

Now Playing

15.14 : C–C Bond Formation: Aldol Condensation Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Views

article

15.1 : 烯醇的反应性

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Views

article

15.2 : 烯醇化根离子的反应性

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.3 : 烯醇和烯醇酸盐的类型

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.4 : 烯醇化机制约定

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.5 : 烯醇酸盐的区域选择性形成

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.6 : 烯醇化的立体化学效应

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.7 : 醛和酮的酸催化 α-卤化反应

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.8 : 醛和酮的碱促进α卤化

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.9 : 甲基酮的多次卤化:卤仿反应

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.10 : 羧酸衍生物的 α-卤化:概述

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.11 : 羧酸的 α-溴化反应:Hell-Volhard-Zelinski 反应

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : α-卤羰基化合物的反应:亲核取代

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.13 : 烯醇的亚硝化

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.15 : 碱催化的 Aldol 加成反应

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。