The design of a transmission shaft is governed by two primary specifications: the power it transmits and its rotational speed. These parameters guide the selection of the shaft's material and cross-sectional dimensions, ensuring that the material's maximum shearing stress remains within the elastic limit while transmitting the desired power at the given speed. The system's power is intrinsically linked to the applied torque. The torque applied to the shaft can be calculated by reconfiguring the terms.
This calculation considers both the power requirements and the shaft's rotational speed. Once the torque and maximum allowable stress are calculated, they are incorporated into the elastic torsion formula. This process yields the minimum permissible value for the shaft radius. In the case of a solid circular shaft, the ratio of the polar moment of inertia to the shaft radius varies as the cube of the shaft radius. The minimum required value for the shaft radius is computed by substituting this value.
For a hollow cylinder shaft, the computations render the minimum permissible value for the outer radius of the shaft. As a result, the design process for a transmission shaft is a careful balance of power, speed, stress limits, and physical dimensions.
来自章节 19:
Now Playing
Torsion
234 Views
Torsion
308 Views
Torsion
220 Views
Torsion
204 Views
Torsion
196 Views
Torsion
234 Views
Torsion
137 Views
Torsion
159 Views
Torsion
86 Views
Torsion
132 Views
Torsion
106 Views
Torsion
147 Views
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。