登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

弥散张量成像(DTI)进行尝试描绘视觉通路的主要部件。该目标是利用一种FDA批准的标准商业工作站可能被用于日常例程以试图减少在病人的视觉通路的手术损伤。

摘要

DTI是标识白质(WMT)非侵入性地在使用扩散测量健康和非健康患者的技术。类似的视觉通路(VP),WMT不与古典MRI或显微镜手术中可见。 DIT将有助于神经外科医生,以防止破坏的副总裁,同时消除邻近该WMT病变。我们已经进行了英国贸工部对50例患者手术前后2012年3月至2014年1月要浏览我们使用了3DT1加权序列。此外,我们进行了T2加权和DTI序列。所使用的参数为,FOV:20​​0×200毫米,切片厚度:2毫米,并采集矩阵:96×96得到的2×2×2mm的几乎各向同性的体素。轴向核磁共振进行了使用32梯度方向,一个B0形象。我们使用回波平面-成像(EPI)和资产并行成像中的2的加速度因子和为800秒/平方毫米的b值。扫描时间小于9分钟。 ENT">获得使用FDA批准它使用被称为连续跟踪(事实)光纤分配一个简单的纤维跟踪方法的手术导航系统的程序进行处理的贸工部的数据,这是基于对感兴趣的区域间线的传输(投资回报率),这是由医生确定。50的最大角度,足协启动0.10的值,为0.20平方毫米/停止的ADC值S被用于跟踪技术参数。

有一些限制这种技术。在有限的捕获时间帧强制折衷的图像质量。另一个重要的一点不容忽视的是在手术中的脑转移。至于后者术中MRI检查可能会有帮助。另外需要的假阳性或假阴性束的风险要考虑到这可能会危及最终结果。

引言

弥散张量成像(DTI)用于在人脑中1描绘WMT非侵入。它已被用于在过去的十年中,以减少手术1期间伤及大脑口才方面的风险。

英国贸工部在50例患者行2012年3月和2014年1月间,以塑造视觉通路。贸工部可能通过提供关于白质束的解剖位置的重要信息保存完善的大脑雄辩地区在手术过程中。它已被纳入战略规划切除复杂的脑部病变1。然而,视觉通路的写照仍然是一个挑战,因为没有标准,英国贸工部,放置种子数量和效果12诠释的参数。

不同的算法已经被至今19-21实现。一些方法集中在确定性方法19,22-25。另一些人用概率方法,26,27,29。最近,采用Q-球张量场,扩散光谱成像和高角分辨率弥散成像(HARDI)正在使用的技术来描绘等等的视觉通路1,13-15,18白质。然而,在必要时对HARDI是显著长45分钟,该软件是不能商购获得,并强调科学应用18。教学期间为HARDI似乎是长于DTI 18。

所提出的协议是容易可行的,可以避免发病率和改善术后结果用于神经外科手术的日常例程。额外的时间用于该协议是小于9分钟,比其他协议1,9,12,16显著更快。承认许多复杂的算法近来已经开发出了纸张限制的事实本身的使用可商购的和FDA批准的软件。然而它是强制性的,以顾及它们上面提到了这种技术的局限性。

研究方案

注:此协议遵循中心医院去卢森堡在卢森堡的准则。

1,准备弥散张量成像的视觉通路的神经外科及跟进

  1. 至少有一天在手术前严格轴向采用32梯度方向,一个B0图像进行核磁共振成像扫描。请随时与神经放射学单位保持密切联系。
    注意:请明确的神经放射手术后的图像是相同的操作之前。
  2. 使用3特斯拉MRI检查,执行3DT1加权和DTI序列扫描。手术后进行3DT1加权序列为好。

2,利用规划站

  1. T2加权,3DT1加权和DTI序列扫描数据传输到数字成像和通信医学(DICOM)。这个过程需要长达7分钟。
    注:唐`停止该程序befo再有转印的所有序列。因此能够停止并在稍后继续根据手术的日期。
  2. 打开手术导航系统计划。单击文件,然后导入DICOM标准。重复此过程三次,上面提到的所有序列。
    1. 单击添加查看。单独添加每一个序列。唐`尝试进行查看。
  3. 点击工具。打开DTI张量的准备。在屏幕中间的观察的新窗口。
  4. 完成以下四个步骤。
    1. 进行梯度分配作为第一步骤。
      1. 从1000至800秒/平方毫米上的窗口的右下角改变b值。
      2. 调整窗口右上角的门槛。做手工通过写一个号码或移动光标。 20可能是一个可接受的值。它是一种个人的经验,它不是强制性的。
    2. 进行梯度注册作为第二步骤。
      1. 单击该按钮全部自动。这个过程需要长达5分钟。
      2. 点击确认所有注册。未经验证的注册是不可能继续。
    3. 进行配准作为第三步骤。
      1. Coregister MR1和手动B0 MR2的图像。最后确认所有注册。
        注:可以自动执行此步骤。但是,结果可能不总是令人满意的末端。
    4. 执行的张量运算作为第四和最后一个步骤,
      1. 确保FA / DEC / ADC上。如果不点击。
      2. 点击计算。这个程序将只需要几秒钟。
  5. 保存所有的数据,然后继续fibertracking。不要停止不保存一切。

3 Fibertracking

注:解剖的视觉通路的知识是成功的结果非常重要。

  1. 准备找三个要点,其中的纤维要经过。
  2. 确定使用解剖知识视交叉。
    1. 使用投资回报为出发点,让纤维通过。感兴趣区由医师确定。
    2. 另外,部分涉嫌的区域。点击分割左下方,并会出现另一个窗口。分割区解剖学定义的区域。
      1. 手工绘制的区域。向上和向下滚动,以包括整个视交叉。保存程序并返回。
    3. 跟踪纤维无论是从感兴趣的区域或从该分段区或两者。
    4. 该纤维到达左膝状体核(LGN),这是视觉通路的第二个重要的点。的最大角度是50的假大片的风险会升高与如果角度过大。
      1. 存在这样的可能性,以段的LGN所示的视交叉然后跟踪的纤维。具有分段从视交叉或反之亦然LGN和结束运行视交叉,轨道纤维之后。
    5. 段的视觉皮层。然后像在视交叉的情况。这可能需要一些时间,因为3DT1加权图像包含160片。
    6. 从跟踪视觉皮层的LGN的纤维。所以能够从LGN跟踪他们的视觉皮层为好。
    7. 如果视觉皮层是由肿瘤或水肿入侵然后使用感兴趣区域中发生的分段区域,然后让在LGN的方向运行的纤维。
      请注意:如果水肿是分段它有时可能侵入视觉皮层然后再视皮层可能不能够完全分割,因为计算机`吨区分它们。 That`s为什么有必要把投资回报率。
    8. 重复一切为了另一个半球。
    9. 开始第一健康半球。
      注意:可以先从另一个太多,但它可能会更容易先跟踪健康半球的纤维,成为有关情况的第一个想法。这不是强制性的,它仅仅是一个建议。
  3. 段的脑损伤和水肿。请按3.2.2如上所述。
    1. 为了区分更好分配为每分段的面积或病变的一种颜色。
  4. 的情况下的突发事件的或在紧急情况下的各步骤后保存的程序。
  5. 本地导出整个数据。它可以直接导出到手术室,但isn`t建议。
    1. 按文件,然后导出三维物体。请确保只导出导航考试。
    2. 唐`出口混合考试。
  6. 进入头颅。选择合适的病人,然后按Stealthmerge。选择3DT1加权图像作为参考考试。
  7. 创建3D模型,并插入了一切。
  8. 导入数据In中的手术室。

结果

该协议使医生能够充分地描绘了​​VP的主要部分。它可以随着时间稍微量,以防止损害患者旁边口​​才区域脑病变使用。术后控制也显示出了良好的效果。 VP是描绘在图7中后,病人从胶质母细胞瘤手术。 图2给出了副总裁复发胶质母细胞瘤后。作者承认提出该协议描绘迈耶环这仍然是一个重大挑战困难的事实。

讨论

DTI是一种技术,使神经外科医生形象化白质在体内 8。视觉通路是这些大片之一。虽然这种方法为医生提供关于病人有关的大脑,我们不得不说,这种技术的一些局限性做还存在雄辩区病变的治疗提供新的可能性。第一个也是最明显的挑战是脑转移,其中正在调查4仍然是一个问题。之后通过除去肿瘤或我们`吨有相同的条件下在手术前的脑脊液损失打开硬脑膜和操纵后在脑?...

披露声明

The authors declare that they have no competing financial interests.

致谢

We would like to thank the whole Service of Neuroradiology. We would like to thank Lis Prussen for her work in the library.

材料

NameCompanyCatalog NumberComments
Name of Material/ EquipmentCompanyCatalog NumberComments/Description
3-Tesla-MRIGeneral Electric Signa LX version 9.1
Surgical Navigation System SrogramMedtronic9734478
Surgical Navigation System SrogramMedtronic4500810331  20016318

参考文献

  1. Fernandez-Miranda, J. C., et al. High-Definition Fiber Tractography of the Human Brain: Neuroanatomical Validation and Neurosurgical Applications. Neurosurgery. 71 (2), 430-453 (2012).
  2. Alexander, D. C., Barker, G. J. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage. 27 (2), 357-367 (2005).
  3. Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 24 (3), 478-488 (2006).
  4. Abdullah, K. G., Lubelski, D., Nucifora, P. G., Brem, S. Use of diffusion tensor imaging in glioma resection. Neurosurg Focus. 34 (4), (2013).
  5. Ota, T., Kawai, K., Kamada, K., Kin, T., Saito, N. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J Neurosurg. 112, 285-294 (2010).
  6. Gras-Combe, G., Moritz-Gasser, S., Herbet, G. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 117 (3), 466-473 (2012).
  7. Maruyama, K., et al. Optic radiation tractography integrated into simulated treatment planning for Gamma Knife surgery. J Neurosurg. 107, 721-726 (2007).
  8. Bérubé, J., McLaughlin, N., Bourgouin, P., Beaudoin, G., Bojanowski, M. W. Diffusion tensor imaging analysis of long association bundles in the presence of an arteriovenous malformation. J Neurosurg. 107 (3), 509-514 (2007).
  9. Sun, G. C., et al. Intraoperative High-Field Magnetic Resonance Imaging Combined With Fiber Tract Neuronavigation-Guided Resection of Cerebral Lesions Involving Optic Radiation. Neurosurgery. 69 (5), 1070-1084 (2011).
  10. Kamada, K., et al. Functional Monitoring For Visual Pathway Using Real-Time Visual Evoked Potentials Aand Optic-Radiation Tractography. Neurosurgery. 57 (1 Suppl), 121-127 (2005).
  11. Wu, W., Rigolo, L., O'Donnell, L. J., Norton, I., Shriver, S., Golby, A. J. Visual Pathway Study Using In Vivo Diffusion Tensor Imaging Tractography to Complement Classic Anatomy. Neurosurgery. 70 (1 Suppl Operative), 145-156 (2012).
  12. Stieglitz, L. H., Lüdemann, W. O., Giordano, M., Raabe, A., Fahlbusch, R., Samii, M. Optic Radiation Fiber Tracking Using Anteriorly Angulated Diffusion Tensor Imaging: A Tested Algorithm for Quick Application. Neurosurgery. 68 (5), 1239-1251 (2011).
  13. Hodaie, M., Quan, J., Chen, D. Q. In Vivo Visualization of Cranial Nerve Pathways in Humans Using Diffusion-Based Tractography. Neurosurgery. 66 (4), 788-795 (2010).
  14. Perrin, M., et al. Fiber tracking in Q-ball fields using regularized particle trajectories. Inf Process Med Imaging. 19, 52-63 (2005).
  15. Wedeen, V. J., et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 41 (4), 1267-1277 (2008).
  16. Yamamoto, A. Diffusion Tensor Fiber Tractography of the Optic Radiation: Analysis with 6-, 12-, 40-, and 81- Directional Motion-Probing Gradients, a Preliminary Study. AJNR Am J Neuroradiol. 28 (1), 92-96 (2007).
  17. Okada, T., et al. Diffusion Tensor Fiber Tractography for Arteriovenous Malformations: Quantitative Analyses to Evaluate the Corticospinal Tract and Optic Radiation. AJNR Am J Neuroradiol. 28 (6), 1107-1113 (2007).
  18. Kuhnt, D., Bauer, M. H., Sommer, J., Merhof, D., Nimsky, C. Optic Radiation Fiber Tractography in Glioma Patients Based on High Angular Resolution Diffusion Imaging with Compressed Sensing Compared with Diffusion Tensor Imaging - Initial Experience. PLoS One. 8 (7), e70973 (2013).
  19. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 44 (4), 625-632 (2000).
  20. Friman, O., Farneback, G., Westin, C. F. A Bayesian approach for stochastic white matter tractography. IEEE Trans Med Imaging. 25 (8), 965-978 (2006).
  21. Mori, S., van Zijl, P. C. Fiber tracking: principles and strategies - a technical review. NMR Biomed. 15 (7-8), 468-480 (2002).
  22. Alexander, D. C., Barker, G. J., Arridge, S. R. Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med. 48 (2), 331-340 (2002).
  23. Mori, S., Crain, B. J., Chacko, V. P., van Zijl, P. C. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 45, 265-269 (1999).
  24. Conturo, T., et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 96, 10422-10427 (1999).
  25. Poupon, C., et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage. 12, 184-195 (2000).
  26. Parker, G. J., Haroon, H. A., Wheeler-Kingshott, C. A. A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging. 18, 242-254 (2003).
  27. Behrens, T. E., et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 6, 750-757 (2003).
  28. Reinges, M. H., Schoth, F., Coenen, V. A., Krings, T. Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: principles and applications. European Journal of Radiology. 49, 91-104 (2004).
  29. Sherbondy, A. J., Dougherty, R. F., Napel, S., Wandell, B. A. Identifying the human optic radiation using diffusion imaging and fiber. J. Vis. 8 (10), (2008).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

90

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。