Method Article
The present work illustrates the convenience of using sublingual immunotherapy to boost the innate immune response in the lungs and confer protection against acute pneumococcal pneumonia in mouse.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages.
This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained.
SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
The overall goal of this work is to illustrate the benefits of sublingual immunotherapy for the treatment of acute respiratory infections (ARI) and present the advantages of this delivery route compared to other routes of administration, namely intranasal.
ARI cause millions of deaths every year especially in children under five. Streptococcus pneumoniae remains as one of the major etiological agents of bacterial pneumonia in infants and the elderly1,2. To present, the main available treatment relies on the use of antibiotics but resistant strains are continuously arising3,4.
SLIT induces broad responses at systemic and also mucosal level, particularly at the respiratory tract5. It has proven effectiveness against influenza infection, promoting long term protection with production of humoral and cellular responses6,7. Besides, it has been shown that prophylactic treatment with bacterial lysates delivered by sublingual route reduced exacerbations of chronic obstructive bronchitis in the elderly8 and prevented recurrent respiratory infections in children9. SLIT has been widely used for the treatment of allergies and asthma. Clinical studies had not only demonstrated its efficacy to modulate the immune response in the respiratory tract but also its safety10. Despite the growing interest of pharmaceutical companies and researchers in SLIT, the mechanisms involved in the induction of mucosal immune responses after sublingual delivery of compounds remain obscure. Recently, attention has been focused on the mechanisms promoting tolerance associated with allergen desensitization. It has been proposed that resident and recruited cells at the sublingual mucosa, like dendritic cells and macrophages, can promote tolerance after SLIT11-13. Dendritic cells of the oral mucosa can promote IFN-gamma and IL-10 producing T helper cells11 as well as recirculate to the distal genital mucosa and promote CD8+ T cells14. However, little is known about the impact of SLIT on innate cells or its capacity to improve pathogen clearance during acute respiratory infections.
The natural control of pneumococcal infection in the lungs greatly depends on the efficient and swift activation of local innate defences. We previously showed that enhancement of lungs’ innate immunity by a single intranasal dose of flagellin (FliC), a TLR5 and NLRC4 agonist, protects 75-100% of mice challenged with a lethal dose of a clinical isolate of Streptococcus pneumoniae serotype 1. This protection was shown to be dependent on local recruitment of GR1+ cells (likely polymorphonuclear neutrophils, PMNs) and not dependent on antibodies, B or T cells15.
Flagellin is the structural component of the bacterial flagellum. In its monomeric form it is recognized by two Pathogen Recognition Receptors (PRRs), TLR5 that senses extracellular FliC16 and NLRC4/NAIP5 inflammasome that detects intracellular flagellin17,18. When FliC is sensed by the PRRs an important inflammatory response is triggered. We and others have demonstrated that instillation of purified FliC from Salmonella enterica serovar Typhimurium into the lungs drives swift production of chemokines and cytokines specially when recognized by the lungs’ epithelium that in turn orchestrate the recruitment of immune cells into the airways, mainly PMNs15,19-21. Although transient, the substantial neutrophil infiltration that takes place into the airways after nasal delivery of FliC could be a concern if moving towards clinical therapies for human use. Excessive inflammation could be detrimental for the lungs’ function. Moreover, it has been shown that intranasal delivery of immunostimulatory molecules may cause facial paralysis and/or brain toxicity22-24.
Sublingual immunotherapy offers a safer alternative to modulate the immune response in the respiratory tract compared to the intranasal route. It is non-invasive, painless, simple and has good patient compliance25. Furthermore, as mentioned before, it can induce protective responses in the respiratory mucosa without the risks associated to direct intranasal or intrapulmonary delivery of formulations. Sublingual route could be alternatively used to deliver molecules that have great effects onto the lung’s immune system but that have been proven to be toxic or to elicit great inflammation when administered intranasally. Besides these advantages, formulations for sublingual immunotherapy have lower cost of manufacture since non-sterile products can be delivered by this route and endotoxic shock is not a concern for SLIT. On the other hand, it is worth noticing that higher doses of the immunostimulatory compounds compared to those used by intranasal or parenteral routes are necessary to induce an immune response in the lungs; also highly concentrated solutions are needed when using the mouse model of SLIT since the anatomical site where the formulations are deposited is small.
Based on our previous published data, we developed a model of protection using sublingual immunotherapy with flagellin as model immunostimulant. We demonstrated that a single dose of flagellin induced 60% survival against invasive pneumococcal pneumonia caused by the serotype 1 strain while all mice in the control group died of infection within 5 days. Flow cytometry analysis showed that higher numbers of PMN are recruited into the airways of protected animals after sublingual treatment with flagellin suggesting that these cells might be involved in the mechanism of protection induced by sublingual immunotherapy.
This video shows in detail how to perform sublingual immunotherapy and also how to recover relevant tissue from the sublingual mucosa, draining lymph nodes as well as lungs and airways to perform further analysis. Additionally, it illustrates the general technique of cell preparation for FACS analysis and briefly shows how to prepare Streptococcus pneumoniae suspensions and how to perform intranasal infections in mouse to set up the acute infection model.
乌拉圭 - 涉及动物的过程中按照协议车次071140-000821-12和08052010批准的名誉委员会,动物实验和医学院,大学德拉共和的指令董事会执行。
治疗剂的1舌下给药
2,菌悬液的制备和鼻内的挑战与肺炎链球菌
注:S。肺炎是一种自然的人类病原体,可能会导致危及生命的疾病,如侵袭性肺炎,败血症和脑膜炎。吸入或与粘膜接触的时候,可能会出现传输。因此,可能已经在接触与S的所有样品肺炎必须使用二类生物安全柜适当的生物安全二级机构进行处理。检查机构对处理第二类病原体的防护服,废物处理和额外的保安措施可能适用的标准操作程序。受感染的动物应存放在单独的通风笼中装有HEPA过滤器隔离。抗肺炎球菌疫苗和抗生素治疗是可用的。欲了解更多信息,请参阅参考资料27和1。
3,组织收集和样品制备用于流式细胞术(FACS)分析
3.1)组织收集
3.2)的流式细胞仪分析的样品制备。
4,总RNA提取,cDNA合成和核酸荧光PCR检测。
4.1)RNA提取和cDNA合成。
4.2),实时荧光定量PCR(定量PCR)。
舌下免疫治疗可以成功地用于调节肺部的免疫应答。我们发现,鞭毛蛋白,该TLR5和NLRC4激动剂的单一剂量,可诱导的mRNA的显著上调编码趋化因子CXCL1,CCL20和细胞因子IL-6相比盐水处理的对照组。折叠诱导的mRNA水平的缝后达到峰值8小时和20小时( 图1),之后返回到基础水平。然而,当缝进行2小时前鼻内感染带S。肺炎,CXCL1和IL6的mRNA水平保持显著缝后相比,未经处理的动物( 图2)上调甚至24小时。
BAL中的细胞群体和肺组织中通过FACS的分析表明,与FLIC通过舌下途径治疗的动物在肺'组织( 图3)增加了中性粒细胞的数目在呼吸道,但并非如此。
最后,肺炎球菌攻击后生存先前的Flic治疗舌下路线或用生理盐水作为对照组动物进行了比较。如示于图4中 ,缝有鞭毛促进保护和增加的存活对急性肺炎球菌性肺炎。
图1动力学肺'转录信息的舌下免疫与鞭毛蛋白后,将8至10周龄的BALB / c小鼠(n = 4)与10微克鞭毛蛋白或盐水的麻醉下舌下途径处理。肺部收集在不同的时间点,并放置在核酸防腐剂。总RNA的提取,进行与合成cDNA。 mRNA水平通过使用TABL上市的特异性引物实时PCR评价ê1。相对定量是根据使用Actb的 mRNA水平正常化ΔCT方法进行。相比于盐水治疗组的平均±SEM结果显示为倍的增加。星号表示,根据Mann-Whitney检验计算统计学显著差异(P <0.05)。结果代表2个独立的实验。
图2肺'舌下免疫与 (为对照组为治疗组N = 4和n = 7) 的鞭毛蛋白。8到10周龄的BALB / c小鼠后,肺炎球菌肺炎中的转录概况由具有10鞭毛蛋白或盐水微克处理在麻醉下舌下途径。 2小时后小鼠鼻内用最小致死量(MLD),造成10挑战S的 临床分离株的0%死亡率肺炎链球菌血清型1 E1585,相当于4×10 5 CFU / 50微升。肺部收集在攻击后24小时,并储存在核酸防腐剂,直到RNA提取和cDNA合成进行。实时进行PCR(参见引物列表在表1中)和相对定量是根据使用Actb的 mRNA水平进行归一化ΔCT法进行的。相比于盐水治疗组的平均±SEM结果显示为倍的增加。星号表示,根据Mann-Whitney检验计算统计学显著差异(P <0.05)。
中性粒细胞的图3分析(PMN)招聘狭缝后肺部的组织和呼吸道。八至10周龄的BALB / c小鼠(n = 4)与10微克鞭毛蛋白或盐水的麻醉下舌下途径处理。 2小时后小鼠鼻内用S的MLD挑战肺炎链球菌血清型1 E1585。在攻击后24小时,BAL进行和肺进行处理,用于FACS分析。中性粒细胞鉴定为Ly6G 高 / CD11b的高 / CD11c的阴性细胞和基于FCS的SSC的信息。结果表示为中性粒细胞的相对的BAL或肺细胞总数的百分比。棒代表平均±标准差。星号表示根据单程Mann-Whitney检验计算统计学显著差异(p <0.05)。
图4。缝与鞭毛蛋白保护小鼠免于急性肺炎球菌性肺炎。 8到10周龄的BALB / c小鼠(n = 8)用10微克鞭毛蛋白或盐水的麻醉下处理通过舌下途径。 2小时后小鼠鼻内用S的MLD挑战肺炎链球菌血清型1 E1585。生存评估每天。根据对数秩(曼特尔 - 考克斯)测试Kaplan-Meier曲线进行了比较。星号表示统计显著差异(P <0.05)。结果代表了2个独立的实验。
产品名称 | 序列5'-3' | PCR产物的长度(bp)的 |
MB-actin_F | GCTTCTTTGCAGCTCCTTCGT | 68 |
MB-actin_R | CGTCATCCATGGCGAACTG | |
mCCL20_F | TTTTGGGATGGAATTGGACAC | 69 |
mCCL20_R | TGCAGGTGAAGCCTTCAACC | |
mCXCL1_F | CTTGGTTCAGAAAATTGTCCAAAA | 84 |
mCXCL1_R | ACGGTGCCATCAGAGCAGTCT | |
MIL-6_F | GTTCTCTGGGAAATCGTGGAAA | 78 |
MIL-6_R | AAGTGCATCATCGTTGTTCATACA | |
mTNFalpha_F | CATCTTCTCAAAATTCGAGTGACAA | 63 |
mTNFalpha_R | CCTCCACTTGGTGGTTTGCT | |
mCxcl2_F | CCCTCAACGGAAGAACCAAA | 72 |
mCxcl2_R | CACATCAGGTACGATCCAGGC |
用于实时PCR分析表1中的引物列表。用于定量PCR分析的具体的引物序列。正向和反向引物对小鼠ACTB,Cccl20,CXCL1,IL6,肿瘤坏死因子和CXCL1表示为5'-3'序列与预期产物长度为碱基对(bp)。
治疗剂舌下给药已被证实为调制在呼吸道的免疫应答的有用手段。狭缝的用于呼吸病症的治疗的主要优点是,它不涉及直接递送化合物进入肺部或鼻腔的,比基于鼻内给药31治疗更安全。
舌下免疫可用于调制方式不同的免疫反应,或者用于诱导的调控反应,可以改善变应性炎症和哮喘32症状或诱导的先天免疫机制瞬时激活治疗急性肺部感染,如下所示。
在这个视频呈现的小鼠模型是不同的化合物作为治疗剂用于狭缝的筛选的方便方法。
这种动物模型提供了一个有用的方法来确定的影响缝在肺部的免疫应答以及在其他器官( 例如 ,引流淋巴结或远端粘膜部位),可以不通过使用体外模型来模拟。虽然有使用说明舌下免疫治疗获得效果了多篇论文,并没有做出详细的方法舌下给药的方法可用呢。此外,该模型可用于舌下疫苗旨在在呼吸道赋予全身以及局部保护评价。
如图所示的附带视频,化合物的舌下给药是,可以在没有大量的训练,需要能够容易地进行一个简单的过程。通常情况下,一个人精通动物处理,需要1小时,在一组使用注射麻醉剂如本协议中所述的10只小鼠进行缝。如果肺炎球菌的挑战进行为好,另外的90分钟将被要求准备细菌悬浮液,并执行这些动物的鼻内攻击。
这里介绍的FACS协议允许该狭缝中的给药本地站点冲击的便利特性,排在肺部的细胞动力学淋巴结以及它们的效果。
支气管含量和肺实质的单独的分析是非常重要的,以鉴别呼吸道的免疫居民和从那些留在组织内的浸润细胞类型。在BAL内容的分析使肺泡巨噬细胞周转的研究以及细胞招募的动态感应到不同的治疗肺泡腔, 如 ,中性粒细胞,嗜酸性粒细胞,单核细胞。 BAL也可以使用酶联免疫吸附测定(ELISA)或检测舌下疫苗接种后引起分泌型IgA抗体,以评估所分泌的细胞因子和趋化因子的存在下进行。研究肺"组织将允许其它细胞类型,古典的树突状细胞,T细胞和B细胞的表征。
BAL样本和淋巴结的流式细胞仪分析制备简单。样品采集后,通常60分钟必须完成的染色方案10-20样本。与此相反,从肺或舌下组织细胞的分离将需要更多的时间,因为需要细胞外基质的消化。通过舌下途径递送的治疗剂的吸收可以通过使用体内成像系统,荧光或放射性标记的分子的跟踪处理。
舌下免疫是一个有吸引力的方法,以有效地诱导在呼吸道的免疫反应以及全身性,可用于治疗或预防呼吸病症。确定激活与缝后我在呼吸道的免疫反应的耐受机制的阐明š关键允许的,可以单独使用或组合使用以针对不同的呼吸病症可利用的治疗的新治疗策略的合理设计。
The authors have nothing to disclose.
We acknowledge Dr. Jean-Claude Sirard from the Center for Infection and Immunity of Lille, Institute Pasteur de Lille-France, for kindly providing the purified flagellin and Dr. Teresa Camou, Director of the National Reference Laboratory, Ministry of Health of Uruguay for kindly providing the pneumococcal strain.
The authors would like to express their acknowledgement to Mr. Diego Acosta and Mr. Ignacio Turel form BichoFeo Producciones-Uruguay for their commitment and hard work during the entire video production and edition.
This work was supported by the grants PR_FCE_2009_1_2783 and BE_POS_2010_1_2544 from the National Agency of Research and Innovation, ANII from Uruguay, the Program for Development of Basic Sciences, PEDECIBA of Uruguay and Sectoral Commission of Scientific research, CSIC-Universidad de la República, Uruguay.
Name | Company | Catalog Number | Comments |
Ketamine solution (50 mg/ml) | Pharma Service, Uruguay | ||
Xilacine solution (2 %) | Portinco S.A., Uruguay | ||
Sterile 1 ml syringe | Modern, Uruguay | ||
Sterile 27 G needle | Modern, Uruguay | ||
RPMI 1640 | General Electric Health Care | E15885 | |
Fetal Bovine Serum | ATCC | 302020 | |
Penicillin/Streptomycin Solution | SIGMA | P4333 | |
Sterile PBS without Ca2+/Mg2+ | PAA | H21002 | |
Type-I Collagenase | Life Technologies/Gibco | 17100017 | |
Deoxyribonuclease I (DNAse-I) | SIGMA | D4513 | |
Dispase | Life Technologies/Gibco | 17105041 | |
PerCP-Cy5.5 conjugated rat anti mouse IgG2b anti CD11b | BD | 550993 | Clone M1/70 |
APC conjugated hamster anti mouse IgG1 anti CD11c | BD | 550261 | Clone HL3 |
APC-Cy7 conjugated rat anti mouse IgG2a anti Ly6G | BD | 560600 | Clone 1A8 |
Sterile Saline Solution | Laboratorio Farmaco Uruguayo, Uruguay | ||
Tryptic Soy Agar | BD Difco, France | 236950 | |
Defibrinated Sheep Blood | Biokey, Uruguay | ||
Sterile Petri Dishes | Greiner | 633180 | |
p10 Pipette | Gilson | F144802 | |
p20 Pipette | Eppendorf | 3120000097 | |
p200 Pipette | Gilson | F123601 | |
p200 Pipette | Capp | C200 | |
p200 Pipette | Eppendorf | 3120000054 | |
p1000 Pipette | Eppendorf | 3120000062 | |
Sterile Filter Tips p10 | Greiner | 771288 | |
Sterile Filter Tips p200 | Greiner | 739288 | |
Sterile Filter Tips p1000 | Greiner | 750288 | |
Vortex | BIOSAN | V1-plus | |
Stainless steel fine tip forceps | SIGMA | Z168785/Z168777 | Curved and straight |
Dressing tissue forceps | SIGMA | F4392 | Length 8 inches |
Micro-dissecting forceps | SIGMA | F4017 | Straight |
Micro-dissecting forceps | SIGMA | F4142 | Curved |
Mayo Scissors | SIGMA | Z265993 | |
Scalpel | SAKIRA MEDICAL | ||
Sterile Biopsy Punch Ø 3mm | Stiefel Laboratories Ltd. | 2079D | 5 mm diameter can also be used |
Sterile 1.5 ml Tubes | Deltalab | 200400P | |
Sterile 15 ml Tubes | Greiner | 188271 | |
Sterile 50 ml Tubes | Greiner | 227261 | |
Sterile serological pipettes 5 ml | Greiner | 606160 | |
Sterile serological pipettes 10 ml | Greiner | 607160 | |
Sterile serological pipettes 25 ml | Greiner | 760180 | |
Biological safety cabinet, class II | Thermo Scientific | 1300 series, type A2 | |
Micro-Isolator Rack | RAIR IsoSystem | 76144W | Super Mouse 1800 AllerZone |
Refrigerated Microcentrifuge | Eppendorf | Legend Micro 21R | |
Microcentrifuge | Heraeus | Biofuge-pico | |
Centrifuge | Thermo Scientific | Sorval ST40R | |
CO2 Incubator | Thermo Scientific | Model 3111 | |
Sterile Thin-tip pasteur pipettes | Deltalab | D210022 | |
Sterile pasteur pipettes | Deltalab | 200007 | |
Sterile 24-well plate | Greiner | 662160 | |
Trypan Blue Solution | Life Technologies | T10282 | |
Automatic Cell Counter - Countess | Life Technologies | C10227 | |
Countess Cell Counting Chamber Slides | Life Technologies | C10312 | |
Flow Cytometry Tubes | BD | 343675 | |
Flow Cytometer - FACS Canto-II | BD | ||
Real Time PCR Instrument - Rotor Gene Q or ABI 7900 | Qiagen / Applied Biosystems | ||
Trizol Reagent | Life Technologies | 15596-026 | Molecular Biology Grade |
DNAse-I | Life Technologies | 18068-015 | Molecular Biology Grade |
DNAse-I Buffer 10X | Life Technologies | 18068015 | Molecular Biology Grade |
EDTA 25 mM | Life Technologies | 18068015 | Molecular Biology Grade |
Ultra-Pure Water | Life Technologies | 10977 | Molecular Biology Grade |
RNAse Out | Life Technologies | 100000840 | Molecular Biology Grade |
Random Hexamer Primers | Life Technologies | N8080127 | Molecular Biology Grade |
M-MLV-RT buffer | Life Technologies | 18057-018 | Molecular Biology Grade |
M-MLV-RT enzime | Life Technologies | 28025-021 | Molecular Biology Grade |
QuantiTect Syber Green PCR Kit | Qiagen | 204143 | Molecular Biology Grade |
Specific primers | Life Technologies | Molecular Biology Grade |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。