Method Article
The present work illustrates the convenience of using sublingual immunotherapy to boost the innate immune response in the lungs and confer protection against acute pneumococcal pneumonia in mouse.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages.
This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained.
SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
The overall goal of this work is to illustrate the benefits of sublingual immunotherapy for the treatment of acute respiratory infections (ARI) and present the advantages of this delivery route compared to other routes of administration, namely intranasal.
ARI cause millions of deaths every year especially in children under five. Streptococcus pneumoniae remains as one of the major etiological agents of bacterial pneumonia in infants and the elderly1,2. To present, the main available treatment relies on the use of antibiotics but resistant strains are continuously arising3,4.
SLIT induces broad responses at systemic and also mucosal level, particularly at the respiratory tract5. It has proven effectiveness against influenza infection, promoting long term protection with production of humoral and cellular responses6,7. Besides, it has been shown that prophylactic treatment with bacterial lysates delivered by sublingual route reduced exacerbations of chronic obstructive bronchitis in the elderly8 and prevented recurrent respiratory infections in children9. SLIT has been widely used for the treatment of allergies and asthma. Clinical studies had not only demonstrated its efficacy to modulate the immune response in the respiratory tract but also its safety10. Despite the growing interest of pharmaceutical companies and researchers in SLIT, the mechanisms involved in the induction of mucosal immune responses after sublingual delivery of compounds remain obscure. Recently, attention has been focused on the mechanisms promoting tolerance associated with allergen desensitization. It has been proposed that resident and recruited cells at the sublingual mucosa, like dendritic cells and macrophages, can promote tolerance after SLIT11-13. Dendritic cells of the oral mucosa can promote IFN-gamma and IL-10 producing T helper cells11 as well as recirculate to the distal genital mucosa and promote CD8+ T cells14. However, little is known about the impact of SLIT on innate cells or its capacity to improve pathogen clearance during acute respiratory infections.
The natural control of pneumococcal infection in the lungs greatly depends on the efficient and swift activation of local innate defences. We previously showed that enhancement of lungs’ innate immunity by a single intranasal dose of flagellin (FliC), a TLR5 and NLRC4 agonist, protects 75-100% of mice challenged with a lethal dose of a clinical isolate of Streptococcus pneumoniae serotype 1. This protection was shown to be dependent on local recruitment of GR1+ cells (likely polymorphonuclear neutrophils, PMNs) and not dependent on antibodies, B or T cells15.
Flagellin is the structural component of the bacterial flagellum. In its monomeric form it is recognized by two Pathogen Recognition Receptors (PRRs), TLR5 that senses extracellular FliC16 and NLRC4/NAIP5 inflammasome that detects intracellular flagellin17,18. When FliC is sensed by the PRRs an important inflammatory response is triggered. We and others have demonstrated that instillation of purified FliC from Salmonella enterica serovar Typhimurium into the lungs drives swift production of chemokines and cytokines specially when recognized by the lungs’ epithelium that in turn orchestrate the recruitment of immune cells into the airways, mainly PMNs15,19-21. Although transient, the substantial neutrophil infiltration that takes place into the airways after nasal delivery of FliC could be a concern if moving towards clinical therapies for human use. Excessive inflammation could be detrimental for the lungs’ function. Moreover, it has been shown that intranasal delivery of immunostimulatory molecules may cause facial paralysis and/or brain toxicity22-24.
Sublingual immunotherapy offers a safer alternative to modulate the immune response in the respiratory tract compared to the intranasal route. It is non-invasive, painless, simple and has good patient compliance25. Furthermore, as mentioned before, it can induce protective responses in the respiratory mucosa without the risks associated to direct intranasal or intrapulmonary delivery of formulations. Sublingual route could be alternatively used to deliver molecules that have great effects onto the lung’s immune system but that have been proven to be toxic or to elicit great inflammation when administered intranasally. Besides these advantages, formulations for sublingual immunotherapy have lower cost of manufacture since non-sterile products can be delivered by this route and endotoxic shock is not a concern for SLIT. On the other hand, it is worth noticing that higher doses of the immunostimulatory compounds compared to those used by intranasal or parenteral routes are necessary to induce an immune response in the lungs; also highly concentrated solutions are needed when using the mouse model of SLIT since the anatomical site where the formulations are deposited is small.
Based on our previous published data, we developed a model of protection using sublingual immunotherapy with flagellin as model immunostimulant. We demonstrated that a single dose of flagellin induced 60% survival against invasive pneumococcal pneumonia caused by the serotype 1 strain while all mice in the control group died of infection within 5 days. Flow cytometry analysis showed that higher numbers of PMN are recruited into the airways of protected animals after sublingual treatment with flagellin suggesting that these cells might be involved in the mechanism of protection induced by sublingual immunotherapy.
This video shows in detail how to perform sublingual immunotherapy and also how to recover relevant tissue from the sublingual mucosa, draining lymph nodes as well as lungs and airways to perform further analysis. Additionally, it illustrates the general technique of cell preparation for FACS analysis and briefly shows how to prepare Streptococcus pneumoniae suspensions and how to perform intranasal infections in mouse to set up the acute infection model.
ウルグアイ - 動物を含む手順は、動物実験や医学部の指令委員会、大学·デ·ラ·レプブリカのために名誉委員会によって承認されたプロトコルN°071140-000821-12と08052010に従って行った。
治療剤の舌下投与1。
肺炎球菌による細菌懸濁液と鼻腔内チャレンジの調製
注:S.肺炎連鎖球菌は、侵襲性肺炎、敗血症などの生命を脅かす疾患を引き起こす可能性があり、天然のヒト病原体である髄膜炎。吸入したり粘膜に接触したときに送信が発生する可能性があります。したがって、S.と接触したかもしれないすべての試料肺炎連鎖球菌は、クラスIIバイオセーフティキャビネットを使用して、適切なバイオセキュリティレベルⅡの施設で処理する必要があります。防護服、廃棄物処理および適用される場合があり、追加のセキュリティ対策のためのタイプIIの病原体の取り扱いに関するあなたの機関の標準作業手順を確認してください。感染した動物は、HEPAフィルターを装備したアイソレーター内の個別換気ケージに保管してください。アンチ肺炎球菌ワクチンと抗生物質療法が利用できます。詳細については、参考文献27および1を参照してください。
3組織収集およびフローサイトメトリー(FACS)分析のためのサンプル調製
3.1)組織収集
FACS分析のため3.2)試料の調製。
4。全RNAの抽出、cDNA合成およびリアルタイムPCR。
4.1)RNA抽出およびcDNA合成。
4.2)リアルタイムPCR(定量PCR)。
舌下免疫療法は、正常肺の免疫応答を調節するために使用することができる。私たちは、フラジェリン、TLR5及びNLRC4アゴニストの単回投与は、ケモカインCXCL1、CCL20および生理食塩水処置対照と比較してサイトカインIL-6をコードするmRNAの有意なアップレギュレーションを誘導することができることを示した。 mRNAレベルの誘導倍率は、スリット後の8時間でピークに達し、20時間( 図1)の後に基礎レベルに戻ります。 SLITはS。肺炎連鎖球菌で2時間前に鼻腔内感染を行った場合しかし、CXCL1およびIL6 mRNAのレベルは、有意に非処置動物( 図2)と比較して、SLIT後においても24時間後にアップレギュレートされたままであった。
FACSによってBAL中の細胞集団および肺組織の分析は、舌下経路によりFliCで処置した動物は、気道内ではなく肺'組織( 図3)で好中球の数が増加したことが明らかになった。
最後に、肺炎球菌チャレンジ後の生存率は、以前は、舌下経路により、または対照として生理食塩水でのFliCで処置した動物に比較した。 図4に示すように、フラジェリンとSLIT、保護を促進し、急性の肺炎球菌性肺炎に対する生存を増加させた。
図1フラジェリンと舌下免疫療法後の肺の「転写プロファイルの動態。八〜10週齢のBALB / cマウス(n = 4)は麻酔下で舌下経路によりフラジェリンまたは生理食塩水を10μgで処理した。肺は、異なる時点で採取し、核酸の保存剤中に置いた。全RNA抽出を実施し、cDNAを合成した。 mRNAレベルはTABLに記載されている特異的なプライマーを用いてリアルタイムPCRによって評価した電子1相対的定量化は、正規化のためACTB mRNAレベルを使用したΔCt法に従って行った。結果は、中央値±SEMとして生理食塩水処置群と比較して増加倍数として示されている。アスタリスクは、マンホイットニー検定に従って計算し、統計的に有意な差(p <0.05)を示す。結果は、2つの独立した実験の代表である。
とフラジェリン。エイト10週齢のBALB / cマウス(n = 4対照群であり、n = 7処理されたグループのために) 舌下免疫療法後に肺炎球菌性肺炎の間に、図2の肺'転写プロファイルは、によってフラジェリンまたは生理食塩水を10μgで処理した麻酔下で舌下経路。 2時間後、マウス10を起こす最小致死量(MLD)を鼻腔内経路により攻撃したS.の臨床分離株の0%の死亡率4×10 5 CFU /50μlに対応する肺炎連鎖球菌血清型1 E1585、。肺は、チャレンジ後24時間後に回収し、RNA抽出およびcDNA合成を実施するまでの核酸保存剤で保存した。リアルタイムPCRを行った(表1のプライマーのリストを参照)および相対的定量化は、正規化のためACTB mRNAレベルを用い応じたΔCt法を実施した。結果は、中央値±SEMとして生理食塩水処置群と比較して増加倍数として示されている。アスタリスクは、マンホイットニー検定に従って計算し、統計的に有意な差(p <0.05)を示す。
多形核好中球の図3。分析(PMN)SLIT後に肺の'組織や気道における募集。エイトへ10週齢のBALB / cマウス(N = 4)を麻酔下で舌下経路により、フラジェリンまたは生理食塩水を10μgで処理した。 2時間後、マウスにSのMLDで鼻腔内経路により攻撃した·ニューモニエ血清型1 E1585。 24時間チャレンジ後、BALを実施し、肺をFACS分析のために処理した。 PMNはLy6G 高 / CD11bの高 / CD11cの陰性細胞として同定され、FCS-SSCプロファイルに基づいていた。結果は、BALまたは肺中の全細胞数のに対して、PMNの割合として表されます。バーは、平均±SEM中央値を表す。アスタリスクは、一方向マンホイットニー検定に従って計算統計的に有意な差(p <0.05)を示す。
フラジェリンと図4 SLITは、急性肺炎球菌性肺炎に対してマウスを保護します。 エイト10週齢のBALB / cマウス(n = 8)に麻酔下で舌下経路により、フラジェリンまたは生理食塩水を10μgで処理した。 2時間後、マウスにSのMLDで鼻腔内経路により攻撃した·ニューモニエ血清型1 E1585。生存率は、日常的に評価した。カプラン·マイヤー曲線をログランク(マンテル·コックス)検定に従って比較した。アスタリスクは統計的に有意な差(P <0.05).Resultsは2つの独立した実験の代表であることを示す。
名前 | 配列5'-3 ' | PCR産物lenght(bp)の |
MB-actin_F | GCTTCTTTGCAGCTCCTTCGT | 68 |
MB-actin_R | CGTCATCCATGGCGAACTG | |
mCCL20_F | TTTTGGGATGGAATTGGACAC | 69 |
mCCL20_R | TGCAGGTGAAGCCTTCAACC | |
mCXCL1_F | CTTGGTTCAGAAAATTGTCCAAAA | 84 |
mCXCL1_R | ACGGTGCCATCAGAGCAGTCT | |
MIL-6_F | GTTCTCTGGGAAATCGTGGAAA | 78 |
MIL-6_R | AAGTGCATCATCGTTGTTCATACA | |
mTNFalpha_F | CATCTTCTCAAAATTCGAGTGACAA | 63 |
mTNFalpha_R | CCTCCACTTGGTGGTTTGCT | |
mCxcl2_F | CCCTCAACGGAAGAACCAAA | 72 |
mCxcl2_R | CACATCAGGTACGATCCAGGC |
リアルタイムPCR分析のために用いたプライマーを表1のリスト。qPCR分析のために使用される特定のプライマー配列。フォワードおよびマウスACTBのためのリバースプライマー、Cccl20、CXCL1、IL6、TNFAとCXCL1は 、5'-3 '配列として提示され、予想された生成物の長さは塩基対(bp)で示されている。
治療剤の舌下投与は気道における免疫応答を調節するための有用な手段として実証されている。呼吸器疾患の治療のためのSLITの主な利点は、鼻腔内投与31に基づく治療法よりも安全である、肺や鼻孔への化合物の直接の送達を必要としないことである。
舌下免疫療法は、いずれかのアレルギー性炎症および喘息32の症状を改善するか、またはここに示されているように、急性肺感染症を治療するために先天性免疫機構の一時的活性化を誘導するために、調節応答の誘導のために、さまざまな方法で免疫応答を調節するために使用することができる。
このビデオで提示マウスモデルは、SLITための治療剤としての異なる化合物のスクリーニングのための便利な方法である。
この動物モデルは影響を決定するために有用な手段を提供肺の免疫応答、ならびに他の器官( 例えば 、リンパ節または遠位粘膜部位を排出する)in vitroモデルを使用することによって模倣することができないでSLITの。舌下免疫療法を用いて得られた結果を説明するいくつかの論文がありますが、舌下投与の手順のための詳細な方法は、まだ利用可能とされていない。さらに、モデルは、気道における全身ならびに局所防御を付与することを目的舌下ワクチンの評価のために用いることができる。
添付のビデオに示されるように、化合物の舌下投与を容易に広範囲なトレーニングを必要とせずに行うことができる簡単な手順である。一般的には、動物取扱に習熟人が、このプロトコールに記載されているように注射用麻酔薬を使用した10匹のマウスのグループにスリットを実行するために1時間が必要になります。肺炎球菌チャレンジが同様に実行される場合、追加の90分を準備する必要があります細菌懸濁液と動物の鼻腔内チャレンジを行う。
ここで紹介するのFACSプロトコルは、リンパ節だけでなく、肺の「細胞動態への影響を排液、投与ローカルサイトのSLITの影響の便利な特性評価を可能にする。
気管支コンテンツおよび肺実質の個別の分析では、組織内にとどまるものから、気道の免疫常駐し、浸潤細胞型を区別することが重要です。 BALの内容の分析は、肺胞マクロファージの代謝回転の研究だけでなく、異なる処理によって誘導された肺胞腔、 例えば 、PMNの、好酸球、単球への細胞動員のダイナミクスを可能にする。 BALはまた、酵素結合免疫吸着アッセイ(ELISA)または舌下ワクチン接種後に誘発された分泌されたIgA抗体の検出によって分泌されるサイトカインおよびケモカインの存在を評価するために使用することができる。肺の「組織に関する研究他の細胞型、古典的樹状細胞、T細胞およびB細胞の特徴付けを可能にする。
FACS分析のためのBAL試料及びリンパ節の調製は簡単である。サンプル収集の後、通常は60分〜20のサンプルについて染色プロトコルを完了するために必要とされる。対照的に、肺または舌下組織からの細胞の単離は、細胞外マトリックスの消化が必要とされるので、より多くの時間を必要とする。舌下経路により送達される治療剤の吸収は、 生体内撮像系を用いて 、蛍光または放射性標識された分子を追跡することによって対処することができる。
舌下免疫療法は効果的に呼吸器疾患を治療または予防するために使用することができ、気道ならびに全身的に免疫応答を誘導するための魅力的な方法である。スリットiの後に気道における免疫応答の寛容対活性化を決定メカニズムの解明単独でまたは別の呼吸器状態に対する利用可能な治療と組み合わせて使用することができる新たな治療戦略の合理的設計を可能にするために重要だ。
The authors have nothing to disclose.
We acknowledge Dr. Jean-Claude Sirard from the Center for Infection and Immunity of Lille, Institute Pasteur de Lille-France, for kindly providing the purified flagellin and Dr. Teresa Camou, Director of the National Reference Laboratory, Ministry of Health of Uruguay for kindly providing the pneumococcal strain.
The authors would like to express their acknowledgement to Mr. Diego Acosta and Mr. Ignacio Turel form BichoFeo Producciones-Uruguay for their commitment and hard work during the entire video production and edition.
This work was supported by the grants PR_FCE_2009_1_2783 and BE_POS_2010_1_2544 from the National Agency of Research and Innovation, ANII from Uruguay, the Program for Development of Basic Sciences, PEDECIBA of Uruguay and Sectoral Commission of Scientific research, CSIC-Universidad de la República, Uruguay.
Name | Company | Catalog Number | Comments |
Ketamine solution (50 mg/ml) | Pharma Service, Uruguay | ||
Xilacine solution (2 %) | Portinco S.A., Uruguay | ||
Sterile 1 ml syringe | Modern, Uruguay | ||
Sterile 27 G needle | Modern, Uruguay | ||
RPMI 1640 | General Electric Health Care | E15885 | |
Fetal Bovine Serum | ATCC | 302020 | |
Penicillin/Streptomycin Solution | SIGMA | P4333 | |
Sterile PBS without Ca2+/Mg2+ | PAA | H21002 | |
Type-I Collagenase | Life Technologies/Gibco | 17100017 | |
Deoxyribonuclease I (DNAse-I) | SIGMA | D4513 | |
Dispase | Life Technologies/Gibco | 17105041 | |
PerCP-Cy5.5 conjugated rat anti mouse IgG2b anti CD11b | BD | 550993 | Clone M1/70 |
APC conjugated hamster anti mouse IgG1 anti CD11c | BD | 550261 | Clone HL3 |
APC-Cy7 conjugated rat anti mouse IgG2a anti Ly6G | BD | 560600 | Clone 1A8 |
Sterile Saline Solution | Laboratorio Farmaco Uruguayo, Uruguay | ||
Tryptic Soy Agar | BD Difco, France | 236950 | |
Defibrinated Sheep Blood | Biokey, Uruguay | ||
Sterile Petri Dishes | Greiner | 633180 | |
p10 Pipette | Gilson | F144802 | |
p20 Pipette | Eppendorf | 3120000097 | |
p200 Pipette | Gilson | F123601 | |
p200 Pipette | Capp | C200 | |
p200 Pipette | Eppendorf | 3120000054 | |
p1000 Pipette | Eppendorf | 3120000062 | |
Sterile Filter Tips p10 | Greiner | 771288 | |
Sterile Filter Tips p200 | Greiner | 739288 | |
Sterile Filter Tips p1000 | Greiner | 750288 | |
Vortex | BIOSAN | V1-plus | |
Stainless steel fine tip forceps | SIGMA | Z168785/Z168777 | Curved and straight |
Dressing tissue forceps | SIGMA | F4392 | Length 8 inches |
Micro-dissecting forceps | SIGMA | F4017 | Straight |
Micro-dissecting forceps | SIGMA | F4142 | Curved |
Mayo Scissors | SIGMA | Z265993 | |
Scalpel | SAKIRA MEDICAL | ||
Sterile Biopsy Punch Ø 3mm | Stiefel Laboratories Ltd. | 2079D | 5 mm diameter can also be used |
Sterile 1.5 ml Tubes | Deltalab | 200400P | |
Sterile 15 ml Tubes | Greiner | 188271 | |
Sterile 50 ml Tubes | Greiner | 227261 | |
Sterile serological pipettes 5 ml | Greiner | 606160 | |
Sterile serological pipettes 10 ml | Greiner | 607160 | |
Sterile serological pipettes 25 ml | Greiner | 760180 | |
Biological safety cabinet, class II | Thermo Scientific | 1300 series, type A2 | |
Micro-Isolator Rack | RAIR IsoSystem | 76144W | Super Mouse 1800 AllerZone |
Refrigerated Microcentrifuge | Eppendorf | Legend Micro 21R | |
Microcentrifuge | Heraeus | Biofuge-pico | |
Centrifuge | Thermo Scientific | Sorval ST40R | |
CO2 Incubator | Thermo Scientific | Model 3111 | |
Sterile Thin-tip pasteur pipettes | Deltalab | D210022 | |
Sterile pasteur pipettes | Deltalab | 200007 | |
Sterile 24-well plate | Greiner | 662160 | |
Trypan Blue Solution | Life Technologies | T10282 | |
Automatic Cell Counter - Countess | Life Technologies | C10227 | |
Countess Cell Counting Chamber Slides | Life Technologies | C10312 | |
Flow Cytometry Tubes | BD | 343675 | |
Flow Cytometer - FACS Canto-II | BD | ||
Real Time PCR Instrument - Rotor Gene Q or ABI 7900 | Qiagen / Applied Biosystems | ||
Trizol Reagent | Life Technologies | 15596-026 | Molecular Biology Grade |
DNAse-I | Life Technologies | 18068-015 | Molecular Biology Grade |
DNAse-I Buffer 10X | Life Technologies | 18068015 | Molecular Biology Grade |
EDTA 25 mM | Life Technologies | 18068015 | Molecular Biology Grade |
Ultra-Pure Water | Life Technologies | 10977 | Molecular Biology Grade |
RNAse Out | Life Technologies | 100000840 | Molecular Biology Grade |
Random Hexamer Primers | Life Technologies | N8080127 | Molecular Biology Grade |
M-MLV-RT buffer | Life Technologies | 18057-018 | Molecular Biology Grade |
M-MLV-RT enzime | Life Technologies | 28025-021 | Molecular Biology Grade |
QuantiTect Syber Green PCR Kit | Qiagen | 204143 | Molecular Biology Grade |
Specific primers | Life Technologies | Molecular Biology Grade |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved