JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Described here is the establishment of a clinically relevant ex vivo mock cataract surgery model that can be used to investigate mechanisms of the injury response of epithelial tissues within their native microenvironment.

摘要

The major impediment to understanding how an epithelial tissue executes wound repair is the limited availability of models in which it is possible to follow and manipulate the wound response ex vivo in an environment that closely mimics that of epithelial tissue injury in vivo. This issue was addressed by creating a clinically relevant epithelial ex vivo injury-repair model based on cataract surgery. In this culture model, the response of the lens epithelium to wounding can be followed live in the cells’ native microenvironment, and the molecular mediators of wound repair easily manipulated during the repair process. To prepare the cultures, lenses are removed from the eye and a small incision is made in the anterior of the lens from which the inner mass of lens fiber cells is removed. This procedure creates a circular wound on the posterior lens capsule, the thick basement membrane that surrounds the lens. This wound area where the fiber cells were attached is located just adjacent to a continuous monolayer of lens epithelial cells that remains linked to the lens capsule during the surgical procedure. The wounded epithelium, the cell type from which fiber cells are derived during development, responds to the injury of fiber cell removal by moving collectively across the wound area, led by a population of vimentin-rich repair cells whose mesenchymal progenitors are endogenous to the lens1. These properties are typical of a normal epithelial wound healing response. In this model, as in vivo, wound repair is dependent on signals supplied by the endogenous environment that is uniquely maintained in this ex vivo culture system, providing an ideal opportunity for discovery of the mechanisms that regulate repair of an epithelium following wounding.

引言

临床相关,模拟白内障手术,这里所描述的体外上皮伤口愈合模型的开发是为了提供调查,在响应于损伤调节修复上皮组织的机制的一种工具。在创建该模型旨在为关键特征包括1)提供条件精密地复制在体内响应于伤人在培养设置,2)缓和调制修复的调控元件,以及3)能力图像的修复过程中,其整体,在实际时间。我们面临的挑战,因此,是在细胞的天然微环境创造一种文化模式,即有可能学习和操作,上皮创面修复。这种创伤修复模型的有效性开辟了新的可能性,标识来自调节修复过程基质蛋白,细胞因子和趋化因子的内源性信号提示。另外,该模型是理想的研究如何一Ñ ​​上皮能够移动作为集体片重新epithelialize伤口区域2,3,和用于确定在伤口边缘起作用的引导受伤上皮4的集体迁移间充质领袖细胞的谱系。这种模式还提供了一个用以标识疗法,可以有效的促进伤口愈合,防止异常创面修复5的平台。

目前已经有许多可用的创伤修复模式,无论是在文化和体内 ,它提供了当今大多数所谓对伤口修复过程。在动物损伤模型,如角膜6-12和皮肤13-17,有研究的组织的响应伤人的所有修复介质是可以参与的过程中,包括来自所述的上下文中,机会血管和神经系统。但是,也有限制操纵experi体内的精神的条件下,它是目前无法进行体内修复反应的成像研究,随时间连续。与此相反,大多数体外伤口修复培养模型,如划痕,可以很容易地操纵和随后随着时间的推移,但缺乏研究伤口愈合中的体内组织的环境背景。虽然体外模型提供了细胞的微环境加上调节修复的分子调节的过程中的任何时间点的能力范围内不断研究损伤修复过程中随着时间的优势,很少有车型适合这些参数。

这里描述的方法,以产生高度可重复的离体上皮的伤口愈合是再现上皮组织的响应于生理伤人培养物。使用鸡胚镜头作为组织源, 体外 MOCķ白内障手术被执行。该透镜是一种理想的组织用于这些研究,因为它是自包含在一个厚的基底膜胶囊,无血管,没有神经支配,且没有任何相关联的基质18,19。在人类疾病,白内障手术涉及视力丧失,由于透镜的混浊,并且包括除去晶状体纤维细胞块,其包含大量的透镜组成。白内障手术后视力是通过人工眼内透镜的插入恢复。在白内障手术过程中,通过除去纤维细胞,诱导在相邻透镜上皮,这是为了响应通过再上皮晶状体囊的后部区域已被占用的纤维细胞的损伤的反应。在白内障手术中,因为在大多数伤口修复反应,还有,有时会发生的异常纤维化结果向伤口愈合反应,与肌纤维母细胞的出现,这在透镜被称为后验Capsu相关联乐混浊20-22。为了产生白内障手术伤口愈合的模型,一个白内障手术的过程是模仿从鸡胚眼中除去产生生理损伤镜头。显微手术切除晶状体纤维细胞导致的晶状体上皮细胞包围着一个非常一致的圆形伤口面积。该细胞群保持牢固地附着在透镜基底膜胶囊和由外科手术过程中受伤。上皮细胞迁移到内源性基底膜的裸露面积愈合伤口的带动下,在维修过程中被称为领导者细胞1波形丰富的间充质细胞群。用该模型的上皮损伤的响应可容易地可视化并随后随时间在细胞的微环境的上下文中。细胞是易于接触到的表达或活化有望发挥在伤口修复中的作用的分子的修饰。日的一项强大功能是模型是分离和研究在伤口愈合的框架迁移特异性改变的能力。准备大量老年匹配体外伤口愈合培养物用于研究的能力是该模型的另一优点。因此,这个模型系统提供了一个独特的机会,梳理出创面修复机制和试验治疗为他们的伤口愈合过程中的作用。预计在体外模拟白内障手术模式,具有广泛的适用性,为研究损伤修复机制的重要资源。

研究方案

下面的协议符合托马斯·杰斐逊大学机构动物护理和使用委员会的指导方针,并与ARVO声明为动物的视觉研究使用。

1.安装镜头,并准备于离体培养伤口

  1. 将3座100 25mm培养皿在无菌的层流罩。填充两个的中途用Tris /葡萄糖缓冲培养皿(TD缓冲器; 140 mM氯化钠,5mM的氯化钾,0.7毫的Na 2 PO 4,5mM的D-葡萄糖,8.25毫摩尔Tris碱,pH值至7.4,用HCl)在RT ,留下第三空。预暖培养基(媒体199补充有1%L-谷氨酰胺和1%青霉素/链霉素)至37℃。
    注意:标准伤口愈合的培养基是无血清,如发生在体内 ;然而,在伤口修复培养可以成功地在确定的培养基条件包括血清或其他因素生长。
  2. 沃取出胚胎ðAY从孵化器15白来航鸡鸡蛋(37.7℃,温和的摇摆举行)
  3. 放置在层流罩和清洁外壳用70%的乙醇从洗瓶选择蛋。进行在层流罩下面在无菌条件下所有的程序,用无菌溶液和仪器。
  4. 裂纹蛋和地点的内容为空百毫米培养皿。使用标准镊子和剪刀精胚斩首。将鸡胚头中含有的TD缓冲培养皿并适当处理的胚胎的其余部分。任选保持于TD缓冲鸡胚磁头的短时间内,不超过15分钟。
  5. 将鸡胚头部上的培养皿盖。采用高精度镊子,随着从眼及其连接玻璃体以下顺序取下镜片。捏眼睛后部与镊子创建一个小的开口在眼睛的后部。
  6. 然后,把握玻璃体W¯¯第i镊子轻轻用力拉玻璃体与滚动运动,附着在透镜玻璃体将从眼移位。地方镜头/玻璃体中含有TD缓冲区剩余的培养皿。让镜头留在TD缓冲的时间不能超过30分钟。
  7. 移动透镜到一个新的培养皿盖子在解剖显微镜下。从这点上执行在解剖显微镜下的所有步骤。以高精度镊子小心刷掉任何睫状体(色素细胞),这些使用镊子的边缘,同时小心不要损坏晶状体组织脱落与透镜。
    注意:卸下睫状体确保那些不是内源的透镜的细胞类型不包括在伤口修复培养。
  8. 通过从与后晶状体囊关联夹断玻璃体分开玻璃体以高精度镊子镜头。
  9. 采用高精度镊子镜头转移到小降TD的缓冲液(约200微升)在一个35mm的组织培养皿。

2.执行模拟白内障手术

  1. 定向在TD缓冲在35mm培养皿与透镜的朝上的前方面的下降的透镜。
    注意:该透镜的前部很容易被致密环在该注意到的晶状体上皮的前部和赤道区域之间的边界的组织的存在识别。与此相反,存在于所述晶状体囊到的晶状体纤维细胞附着的后部不存在标记。
  2. 使用两个高精度镊子作一小切口(大约850μm)的前晶状体囊中,粗基底膜围绕晶状体组织,和其相关联的前晶状体上皮的中心,通过抓住与一个钳组织中的每个手轻轻揪着相反方向。
  3. 取出纤维细胞块,它构成了大部分的晶状体组织,dislod的从附件晋它的晶状体上皮和水力洗脱(经典白内障手术使用的方法,仿照图1A)周围的晶状体囊。
  4. 填充1ml注射器用27.5ģ针尖与300微升的TD缓冲液中。插入针头尖端插入在晶状体前囊制成的切口,和大约一半到透镜。
  5. 轻踏注射器注入TD缓冲区进入晶状体纤维细胞团。注入微升50至200 TD,且绝不超过300微升。观察纤维细胞团从上皮和晶状体囊放松自己。
  6. 采用高精度镊子,通过前切口部位取下镜头松动的纤维细胞团。
    注:此过程留下晶状体后基底膜囊到纤维细胞已附着在剥蚀细胞,和一个受伤的晶状体上皮只是毗邻这个网站。

3. Preparin克受伤的镜头体外培养

  1. 平坦化透镜囊袋而导致的上述的培养皿的白内障手术,细胞面朝上,通过使5削减囊袋的前方面。
  2. 通过在透镜的赤道切割垂直于原始切口部位。弄平晶状体囊所得五"护翼"与培养皿胶囊侧附上皮下来,细胞侧朝上。注意体外受伤的镜头,现在需要一个明星或花形的形状( 见图1B)。
  3. 为了保证胶囊的菜,请用钳子轻轻向下在每个点的明星。这将使一个小凹部,外植体的五个最外的技巧,并导致持续附着到培养皿中。
    注意:可以在此过程中损坏的胶囊,因此它以固定胶囊的菜接近的FLA的前端是重要ps的越好,以及使最少量的固定点的作为可能的(一般两,最多三个每瓣)。
  4. 从35毫米培养皿中取出的TD缓冲器,并将其与1.5预热介质毫升替换。覆盖35mm的培养皿与其盖并置于培养箱(37℃,5%CO 2)。

4.分离中央迁移区(CMZ),在那里再上皮后囊的创面的发生,从原始附件晶状体上皮细胞的区(OAZ),定量分析。

注:细胞开始响应损伤立即移动到CMZ区域。通过在培养一天足够的细胞迁移横跨CMZ分子和生化分析,继CMZ和OAZ通过显微解剖23分离。该协议涉及除去一个翼片(OAZ)中的从胶囊的受伤区域中的时间。

  1. 观察德玛尔阳离子,在解剖显微镜下清晰可见,在OAZ和CMZ之间( 见图2A)。使用两个高精度镊子,两手抓,钳子在OAZ / CMZ线,一条仅仅相邻的其它的边缘,上线的两侧(参见图2A,B,箭头)。
  2. 用一只手/在CMZ一边一个镊子继续守住伤员文化,同时用另一只手/镊子,轻轻一拉沿着OAZ / CMZ线OAZ。该CMZ容易分开沿着这条线的OAZ。沿围绕整个文化这条线继续下去,直到两个地区是完全分开的。
  3. 研究分离OAZ和CMZ分数进行分子分析,例如RNA测序24或生化分析,如蛋白印迹或免疫共沉淀23,25。

结果

离体模型创建研究伤口愈合过程中的细胞的天然微环境

调查涉及细胞的微环境原生内调节上皮伤口愈合机制,创建了一个临床相关的体外模拟白内障手术模式。这个模型是从晶状体组织提供了许多优点,由于其内在特性创建:1)透镜是一个自包含的器官由粗基底膜称为晶状体囊包围; 2)它是无血管,3)没有神经支配和4)免费相关基质。因此,检查了修复过程仅?...

讨论

Here is described a technique for preparing a culture model of wound repair that involves performing an ex vivo cataract surgery on chick embryo lenses after their removal from the eye. The lens epithelium responds to this clinically relevant wounding with a repair process that closely mimics that which occurs in vivo, and shares features with wound repair in other epithelial tissues2,4. While the protocol is straightforward and simple to follow, performing mock cataract surgery with embryoni...

披露声明

The authors declare that they have no competing financial interests.

致谢

This work was supported by National Institutes of Health Grant to A.S.M. (EY021784).

材料

NameCompanyCatalog NumberComments
Sodium Chloride (NaCl)Fisher ScientificS271-3Use at 140 mM in TD Buffer
Potassium Chloride (KCl)Fisher ScientificP217-500Use at 5 mM in TD Buffer
Sodium Phosphate (Na2HPO4)SigmaS0876Use at 0.7 mM in TD Buffer
D-glucose (Dextrose)Fisher ScientificD16-500Use at 0.5 mM in TD Buffer
Tris BaseFisher ScientificBP152-1Use at 8.25 mM in TD Buffer
Hydrochloric acidFisher ScientificA144-500Use to pH TD buffer to 7.4
Media 199GIBCO11150-059
L-glutamineCorning/CellGro25-005-CIUse at 1% in Media199
Penicillin/streptomycinCorning/CellGro30-002-CIUse at 1% in Media199
100 mm petri dishesFisher ScientificFB0875711Z
Stericup Filter UnitMilliporeSCGPU01REUse to filter sterilize Media
Dumont #5 forceps (need 2)Fine Science Tools11251-20
35 mm Cell Culture DishCorning430165
27 G 1 ml SlipTip with precision glide needleBD309623
Fine ScissorsFine Science Tools14058-11
Standard ForcepsFine Science Tools91100-12
Other Items Needed: General dissection instruments,  fertile white leghorn chicken eggs, check egg incubator (humidified, 37.7°C), laminar flow hood, binocular stereovision dissecting microscope

参考文献

  1. Walker, J. L., et al. Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proceedings of the National Academy of Sciences of the United States of America. 107, 13730-13735 (2010).
  2. Friedl, P., Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology. 10, 445-457 (2009).
  3. Riahi, R., Yang, Y., Zhang, D. D., Wong, P. K. Advances in wound-healing assays for probing collective cell migration. Journal of laboratory automation. 17, 59-65 (2012).
  4. Khalil, A. A., Friedl, P. Determinants of leader cells in collective cell migration. Integrative biology : quantitative biosciences from nano to macro. 2, 568-574 (2010).
  5. Walker, J. L., Wolff, I. M., Zhang, L., Menko, A. S. Activation of SRC kinases signals induction of posterior capsule opacification. Investigative ophthalmology & visual science. 48, 2214-2223 (2007).
  6. Sta Iglesia, D. D., Stepp, M. A. Disruption of the basement membrane after corneal debridement. Investigative ophthalmology & visual science. 41, 1045-1053 (2000).
  7. Pal-Ghosh, S., Pajoohesh-Ganji, A., Brown, M., Stepp, M. A. A mouse model for the study of recurrent corneal epithelial erosions: alpha9beta1 integrin implicated in progression of the disease. Investigative ophthalmology & visual science. 45, 1775-1788 (2004).
  8. Pal-Ghosh, S., Pajoohesh-Ganji, A., Tadvalkar, G., Stepp, M. A. Removal of the basement membrane enhances corneal wound healing. Experimental eye research. 93, 927-936 (2011).
  9. Stepp, M. A., et al. Wounding the cornea to learn how it heals. Experimental eye research. 121, 178-193 (2014).
  10. Kuwabara, T., Perkins, D. G., Cogan, D. G. Sliding of the epithelium in experimental corneal wounds. Investigative ophthalmology. 15, 4-14 (1976).
  11. Sherrard, E. S. The corneal endothelium in vivo: its response to mild trauma. Experimental eye research. 22, 347-357 (1976).
  12. Stramer, B. M., Zieske, J. D., Jung, J. C., Austin, J. S., Fini, M. E. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Investigative ophthalmology & visual science. 44, 4237-4246 (2003).
  13. Escamez, M. J., et al. An in vivo model of wound healing in genetically modified skin-humanized mice. The Journal of investigative dermatology. 123, 1182-1191 (2004).
  14. Werner, S., Breeden, M., Hubner, G., Greenhalgh, D. G., Longaker, M. T. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. The Journal of investigative dermatology. 103, 469-473 (1994).
  15. Tarin, D., Croft, C. B. Ultrastructural studies of wound healing in mouse skin. II. Dermo-epidermal interrelationships. Journal of anatomy. 106, 79-91 (1970).
  16. Croft, C. B., Tarin, D. Ultrastructural studies of wound healing in mouse skin I. Epithelial behaviour. Journal of anatomy. 106, 63-77 (1970).
  17. Winstanley, E. W. The epithelial reaction in the healing of excised cutaneous wounds in the dog. Journal of comparative pathology. 85, 61-75 (1975).
  18. Wormstone, I. M., Wride, M. A. The ocular lens: a classic model for development, physiology and disease. Philosophical transactions of the Royal Society of London. Series B, Biological. 366, 1190-1192 (2011).
  19. Danysh, B. P., Duncan, M. K. The lens capsule. Experimental eye research. 88, 151-164 (2009).
  20. Awasthi, N., Guo, S., Wagner, B. J. Posterior capsular opacification: a problem reduced but not yet eradicated. Archives of ophthalmology. 127, 555-562 (2009).
  21. Walker, T. D. Pharmacological attempts to reduce posterior capsule opacification after cataract surgery--a review. Clinical & experimental ophthalmology. 36, 883-890 (2008).
  22. Schmidbauer, J. M., et al. Posterior capsule opacification. International ophthalmology clinics. 41, 109-131 (2001).
  23. Menko, A. S., et al. A central role for vimentin in regulating repair function during healing of the lens epithelium. Molecular biology of the cell. 25, 776-790 (2014).
  24. Chauss, D., et al. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3 (Bethesda). 4, 1515-1527 (2014).
  25. Leonard, M., Zhang, L., Bleaken, B. M., Menko, A. S. Distinct roles for N-Cadherin linked c-Src and fyn kinases in lens development. Developmental dynamics : an official publication of the American Association of Anatomists. 242, 469-484 (2013).
  26. Sieg, D. J., et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature cell biology. 2, 249-256 (2000).
  27. Sieg, D. J., Hauck, C. R., Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of cell science. 112 (Pt 16), 2677-2691 (1999).
  28. Hauck, C. R., Hsia, D. A., Schlaepfer, D. D. The focal adhesion kinase--a regulator of cell migration and invasion). IUBMB life. 53, 115-119 (2002).
  29. Zhao, X., Guan, J. L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced drug delivery reviews. 63, 610-615 (2011).
  30. Menko, A. S., Bleaken, B. M., Walker, J. L. Regional-specific alterations in cell-cell junctions, cytoskeletal networks and myosin-mediated mechanical cues coordinate collectivity of movement of epithelial cells in response to injury. Experimental cell research. 322, 133-148 (2014).
  31. Martin, P. Wound healing--aiming for perfect skin regeneration. Science. 276, 75-81 (1997).
  32. Ferguson, M. W., O'Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 839-850 (2004).
  33. Redd, M. J., Cooper, L., Wood, W., Stramer, B., Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 777-784 (2004).
  34. Nodder, S., Martin, P. Wound healing in embryos: a review. Anatomy and embryology. 195, 215-228 (1997).
  35. Gurtner, G. C., Werner, S., Barrandon, Y., Longaker, M. T. Wound repair and regeneration. Nature. 453, 314-321 (2008).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

100

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。