JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

This protocol describes the process of constructing an insect-machine hybrid system and carrying out wireless electrical stimulation of the flight muscles required to control the turning motion of a flying insect.

摘要

启用无线电数字电子设备的兴起,促使利用小型无线神经肌肉录像机和刺激为研究飞行昆虫的行为。借助该技术使用本协议中所述活虫平台昆虫机混合动力系统的开发。此外,该协议提出的系统结构和用于在不受限制的昆虫评估飞行肌的功能自由飞行的实验程序。为了演示,我们有针对性的第三腋骨片(3AX)肌肉来控制和实现飞行甲虫向左或向右转向。薄银线电极植入上的甲虫两侧的肌肉3AX。这些被连接到一个无线背包的输出( 神经肌肉电刺激器)装上甲虫的前胸。肌肉是由交替的刺激侧(左或右),或者改变stimulatio在自由飞行刺激N频点。甲虫转向同侧当肌肉受到刺激并展出,以增加频率的召。植入过程和三维运动捕获相机系统的体积校准需要小心进行,以避免损坏肌肉和丢失标记的轨道,分别。该方法是非常有益的,研究昆虫飞行,因为它有助于揭示感兴趣的飞行肌的功能在自由飞行。

引言

An insect-machine hybrid system, often referred to as a cyborg insect or biobot, is the fusion of a living insect platform with a miniature mounted electronic device. The electronic device, which is wirelessly commanded by a remote user, outputs an electrical signal to electrically stimulate neuromuscular sites in the insect via implanted wire electrodes to induce user desired motor actions and behaviors. In the early stages of this research field, researchers were limited to conducting wireless recording of the muscular action of an insect, using simple analog circuits comprised of surface-mounted components1-3. The development of system-on-a-chip technology with radio frequency functionality enabled not only the wireless recording of neuromuscular signals but also the electrical stimulation of the neuromuscular sites in living insects. At present, a built-in radio microcontroller is small enough to be mounted on living insects without causing any obstructions to their locomotion4-13.

The development of the built-in radio microcontroller allows researchers to determine electrical stimulation protocols to induce desired motor actions to control the locomotion of the insect of interest. On the ground, researchers have demonstrated walking control by stimulating the neuromuscular sites of cockroaches4,12,14, spiders15, and beetles16,17. In the air, the initiation and cessation of flight were achieved using different methods such as the stimulation of the optic lobes (the massive neural cluster of a compound eye) in beetles7,9 and brain sub-regions in bees18, whereas turning control has been demonstrated by stimulating the antennae muscles and nervous system of the abdomens in moths11,19 and the flight muscles of beetles7,9,13. In most cases, a built-in radio microcontroller was integrated on a custom-designed printed circuit board to produce a miniature wireless stimulator (backpack), which was mounted on the insect of interest. This allows wireless electrical stimulation to be applied to a freely walking or flying insect. Such a microcontroller-mounted insect is what is referred to as an insect-machine hybrid system.

This study describes the experimental protocols for building an insect-machine hybrid system, wherein a living beetle is employed as the insect platform, and instructs on how to operate the robot and test its flight control systems. The third axillary sclerite (3Ax) muscle was chosen as the muscle of interest for electrical stimulation and demonstration of left or right turning control13. A pair of thin silver wire electrodes was implanted in both the left and right 3Ax muscles. Moreover, a backpack was mounted on the living beetle. The other ends of the wire electrode were connected to the output pins of the microcontroller. The backpack was small enough for the beetle to carry in flight. Thus, this allows an experimentalist to remotely stimulate the muscle of interest of an insect in free flight and investigate its reactions to the stimulations.

研究方案

1.动物研究

  1. 后个人Mecynorrhina torquata甲虫英寸(6厘米,将8g)在单独的塑料容器木质颗粒床上用品。
  2. 每次喂糖甲虫果冻(12毫升)每3天杯。
  3. 保持饲养室的温度和湿度在25℃和60%,分别为。
  4. 植入细线电极之前测试每个甲虫的飞行能力。
    1. 轻轻扔甲虫到空气中。如果甲虫能飞的时间超过10秒,连续5个试验,得出这样的结论甲虫拥有定期航班的能力和使用它为后续飞行实验。夺回甲虫,关闭在房间里所有的灯,使其黑暗。这将导致甲虫终止飞行。
      注:甲虫自发地开始飞走时释放到空气中。最好是在一个大的封闭室以进行飞行实验如在图1中(16×8×4米所示的 3的一个动作捕捉空间12.5×8×4米3),作为飞行甲虫动作非常快(约3-5米/秒),并在空气中转动时绘制大弧。

2.植入电极

  1. 通过将它放置在填充有CO 2的1分钟13,16,20-24塑料容器麻醉甲虫。
  2. 通过在热水中浸渍10秒软化的牙模。放置一个木块上麻醉甲虫和软化的牙模固定它。牙科用蜡自然冷却并在几分钟之内固化。
  3. 切割绝缘电线银(127微米裸内径,外径178微米与全氟烷涂时)到25毫米的长度,以用作细线电极植入。
  4. 通过在每个导线的两端燃烧绝缘体露出裸露的银3毫米。
  5. 用细尖的剪刀来创建SMA解剖甲虫的角质层的顶面在metepisternum( 图2c)的约4×4mm的LL窗口。注意:再用柔软的褐色表皮暴露出来, 如图2c中 - 该3AX肌肉位于软角质层下方。
  6. 皮尔斯使用昆虫销(尺寸00)的两个孔中( 图2d)之间2mm的距离暴露的棕色角质层两个孔。
  7. 插入两个线电极(包括在步骤2.4制得一种活性和一个返回电极)小心穿过孔,并将它们植入到每个3AX肌肉以3毫米的深度。
  8. 固定植入电极和举行的地方通过孔下降融化的蜂蜡,避免接触和短路。如果需要的话,通过用热烙铁的前端接触蜂蜡回流过角质层的蜂蜡。蜂蜡快速凝固并加强植入。
    注意:要检查是否着床是正确的,甜菜的鞘翅乐可解除电刺激期间遵守3AX肌肉的运动。

3.无线背包大会

注:背包包括一个内置的无线电微控制器上的4层状FR-4板(1.6×1.6 平方厘米)的。背包是由锂聚合物微电池(3.7 V,350毫克,10毫安)驱动。背包包括电池的总质量为1.2±0.26 g的小于甲虫(10 g体重的30%)的有效负载容量。背包被预编程成接收无线通信,并且有两个输出通道。

  1. 使用双面胶带清洁前胸背板表面(去除角质层蜡层)。然后,附上甲虫搭配了一块双面胶带的前胸背板的背包。
  2. 植入电极的端部连接至背包的输出。
  3. 环绕微电池的反光带,产生一个标记FO- [R动作捕捉摄像头检测。
  4. 附加微电池使用一块双面胶带,使反光带可以通过运动捕获相机被检测的背包的顶部。

4.无线控制系统

注意:在此情况下,术语无线控制系统包括用于在遥控器的接收器,膝上型计算机,以运行定制飞行控制软件,基站,背包,以及动作捕捉系统。

  1. 经由USB端口连接的遥控器的膝上型计算机的基站和接收器。
  2. 切换动作捕捉系统,它通过一个以太网端口连接到膝上型计算机。
  3. 挥动魔杖校准(由运动捕捉系统的供应商公司提供的)完全覆盖运动捕捉空间进行体积校准。
    1. 从笔记本电脑的桌面上打开动作捕捉软件。点击和DR公司选择"资源"面板的"系统"菜单上的所有摄像头。
    2. 点击"3D透视"菜单,选择"相机"切换到摄像机视图。单击"工具"面板上的"照相机"选项卡上显示校准设置。点击"开始",在"创建相机面具"菜单上,以消除来自摄像机的噪音,然后选择"停止"噪音以蓝色掩盖了。
    3. 单击并从"魔杖"菜单和"照相机"选项卡上的"L型框架"菜单中选择"5标记棒&L型框架"。将"棒数"到2500,点击"开始"的"校准相机"菜单上,并在整个动作捕捉空间波校准魔杖。当魔杖计数达到2,500校准过程将停止。
    4. 重复校准过程,如果图像错误(在"工具"面板中的"摄像机"选项卡的底部)高于0.3˚F或任何摄像头。校准后,放在地上的魔杖的动作捕捉空间的中间,然后点击"设置音量起源"菜单上的"开始"设置动作捕捉空间的原点。
  4. 使用虚拟测试记录由在运动捕获空间的用户挥手的标记的运动路径,并确认该标记是否被检测和跟踪检查动作捕捉系统的覆盖范围。如果标记检测过程中经常丢失,重复体积校准,直到假人测试成功。
    1. 点击"捕捉"选项卡上的"工具"面板,然后通过整个动作捕捉空间挥舞采样标记来记录它的轨迹前的"捕捉"菜单上的"开始"。
    2. 录制完毕后,点击"运行重构流水线"来重建标记的位置,并检查录音质量。
  5. 连接为MicroB的端子attery(附接到背包在步骤3.4),以背包的电源引脚。
  6. 测试笔记本电脑和使用自飞行控制软件背包之间的无线通信。在软件点击"开始"命令,检查显示连接状态。

5.免费飞行实验

  1. 开展飞行测量竞技场16×8×4米3的自由飞行实验。
  2. 输入相应的参数,以飞行控制软件(电压,脉冲宽度,频率,和刺激持续时间)。注意:对于示范,我们固定的电压3伏,脉冲宽度为3毫秒,而刺激的持续时间为1秒,变化后的频率为60至100赫兹。
    1. 在软件的屏幕,类型3 3 V在"电压"中,1000为1000毫秒的"刺激持续时间"中,3为在"脉冲宽度"框3毫秒,而在赫兹的期望的频率的"频率"框Øn中的命令窗口。
  3. 松开背包式甲虫到空气中允许它飞行舞台上自由飞翔。手动触发刺激时,甲虫进入动作捕捉空间。按遥控器上的相应命令按钮(左或右),以刺激对甲虫的左侧或右侧的目标肌肉。
    注意:一旦该按钮被按下,在笔记本电脑上运行的飞行控制软件生成的命令,并将其发送到背包。背包然后输出该电刺激到感兴趣的肌肉(左或右侧)。
  4. 观察甲虫的实时反应的刺激时,重建使用三维绘图软件中的数据。
    1. 选择记录在"甲壳虫显示"窗口的数据表的试验之一,并单击"导出熊猫"该试验的数据复制到文件夹的分析和运行3D图形模块。
    2. 对按"N"键盘刺激信号与记录的轨迹结合。按我以显示与突出显示的刺激时期甲壳虫的轨迹。

结果

电极植入手术方式如图2薄银线电极植入通过刺穿上的肌肉( 图2d - E)软角质层小孔甲虫的肌肉3AX。此软角质层刚好在basalar肌肉的apodema上面除去metepisternum的前部后( 图2d - )。然后在电极用蜂蜡( 图2F)固定。

图3示出了使用一个完?...

讨论

植入过程是重要的,因为它影响了实验的可靠性。电极应在3毫米或取决于甲虫(避免与附近的肌肉接触)的大小更小的深度插入到肌肉。如果电极触摸附近的肌肉,可能由于附近的肌肉的收缩发生不期望的马达动作和行为。两个电极应该很好对齐,以确保不会发生短路。当熔融和使用烙铁回流蜂蜡,该实验者有要小心和焊料尽快,由于肌肉可以通过用高温下长时间接触被燃烧,导致肌肉的故障。...

披露声明

The authors declare that there are no conflicts of interest.

致谢

This material is based on the works supported by Nanyang Assistant Professorship (NAP, M4080740), Agency for Science, Technology and Research (A*STAR) Public Sector Research Funding (PSF, M4070190), A*STAR-JST (The Japan Science and Technology Agency) joint grant (M4070198), and Singapore Ministry of Education (MOE2013-T2-2-049). The authors would like to thank Mr. Roger Tan Kay Chia, Prof. Low Kin Huat, Mr. Poon Kee Chun, Mr. Chew Hock See, Mr. Lam Kim Kheong and Dr. Mao Shixin at School of MAE for their support in setting up and maintaining the research facilities. The authors thank Prof. Michel Maharbiz (U.C. Berkeley) his advice and discussion, Prof. Kris Pister and his group (U.C. Berkeley) for their support in providing the GINA used in this study.

材料

NameCompanyCatalog NumberComments
Mecynorrhina torquata beetleKingdom of Beetle Taiwan10 g, 8 cm, pay load capacity is 30% of the body mass
Aproval of importing and using by Agri-Food and Veterinary Authority of Singapore (AVA; HS code: 01069000, product code: ALV002).
Wireless backpack stimulatorCustomTI CC2431 micocontroler
The board is custom made based on the GINA board from Prof. Kris Pister’s lab. The layout of GINA board can be found at    https://openwsn.atlassian.net/wiki/display/OW/GINA
Wii Remote controlNintendoBluetooth remote control to send the command to the operator laptop
BeetleCommander v1.8Custom. Maharbiz group at UC Berkeley and Sato group at NTUEstablish the wireless communication of the backpack and the operator laptop. Configure the stimulus parameters and log the positional data. Visualize the flight data.
GINA base stationKris Pister group at UC BerkeleyTI MSP430F2618 and AT86RF231
Motion capture systemVICONT1608 cameras for a flight arena of 12.5 m x 8 m x 4 m
Motion capture systemVICONT40s12 cameras for a flight arena of 12.5 x 8 x 4 m
Micro batteryFullriver 201013HS10C 3.7V, 10 mAh
Retro reflective tapeReflexiteV92-1549-010150V92 reflective tape, silver color
PFA-Insulated Silver Wire A-M systems786000127 µm bare, 177.8 µm coated, 3 mm bare silver flame exposed at tips
SMT Micro Header SAMTECFTSH-110-01-L-DV0.3 mm x 6 mm, bend to make a 3 mm long slider to secure the electrode into the PCB header.
BeeswaxSecure the electrodes
Dental WaxVertexImmobilize the beetle
Insect pinROBOZRS-6082-30Size  00; 0.3 mm Rod diameter; 0.03 mm tip width; 38 mm Length 
Make electrode guiding holes on cuticle
TweezersDUMONTRS-5015Pattern #5; .05 mm x .01 mm Tip Size; 110 mm Length
Dissecting and implantation
ScissorsROBOZRS-5620Vannas Micro Dissecting Spring Scissors; Straight; 3mm Cutting Edge; 0.1 mm Tip Width; 3" Overall Length 
Dissecting and implantation
Potable soldering ironDAIYODS241Reflow beeswax
Hotplate CORNINGPC-400DMelting beeswax and dental wax
Flourescent lampPhilipsTL5 14WLight the entire flight arena with 30 panels (60 x 60 cm2). Each panel has 3 lamps.
14 W, 549 mm x 17 mm 

参考文献

  1. Kutsch, W., Schwarz, G., Fischer, H., Kautz, H. Wireless Transmission of Muscle Potentials During Free Flight of a Locust. J. Exp. Biol. 185 (1), 367-373 (1993).
  2. Fischer, H., Kautz, H., Kutsch, W. A Radiotelemetric 2-Channel Unit for Transmission of Muscle Potentials During Free Flight of the Desert Locust, Schistocerca Gregaria. J. Neurosci. Methods. 64 (1), 39-45 (1996).
  3. Ando, N., Shimoyama, I., Kanzaki, R. A Dual-Channel FM Transmitter for Acquisition of Flight Muscle Activities from the Freely Flying Hawkmoth, Agrius Convolvuli. J. Neurosci. Methods. 115 (2), 181-187 (2002).
  4. Sanchez, C. J., et al. Locomotion control of hybrid cockroach robots. J. R. Soc. Interface. 12 (105), (2015).
  5. Sato, H., et al. A cyborg beetle: insect flight control through an implantable, tetherless microsystem. , 164-167 (2008).
  6. Bozkurt, A., Gilmour, R. F., Lal, A. Balloon-Assisted Flight of Radio-Controlled Insect Biobots. IEEE Trans. Biomed. Eng. 56 (9), 2304-2307 (2009).
  7. Sato, H., et al. Remote Radio Control of Insect Flight. Front. Neurosci. 3, (2009).
  8. Daly, D. C., et al. A Pulsed UWB Receiver SoC for Insect Motion Control. IEEE J. Solid-State Circuits. 45 (1), 153-166 (2010).
  9. Maharbiz, M. M., Sato, H. Cyborg Beetles. Sci. Am. 303 (6), 94-99 (2010).
  10. Tsang, W. M., et al. Remote control of a cyborg moth using carbon nanotube-enhanced flexible neuroprosthetic probe. , 39-42 (2010).
  11. Hinterwirth, A. J., et al. Wireless Stimulation of Antennal Muscles in Freely Flying Hawkmoths Leads to Flight Path Changes. PloS ONE. 7 (12), (2012).
  12. Whitmire, E., Latif, T., Bozkurt, A. Kinect-based system for automated control of terrestrial insect biobots. , 1470-1473 (2013).
  13. Sato, H., et al. Deciphering the Role of a Coleopteran Steering Muscle via Free Flight Stimulation. Curr. Biol. 25 (6), 798-803 (2015).
  14. Erickson, J. C., Herrera, M., Bustamante, M., Shingiro, A., Bowen, T. Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot. PLoS ONE. 10 (8), e0134348 (2015).
  15. Zhaolin, Y., et al. A preliminary study of motion control patterns for biorobotic spiders. , 128-132 (2014).
  16. Feng, C., Chao, Z., Hao Yu, C., Sato, H. Insect-machine hybrid robot: Insect walking control by sequential electrical stimulation of leg muscles. , 4576-4582 (2015).
  17. Cao, F., et al. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles. PLoS ONE. 9 (8), e105389 (2014).
  18. Zhao, H., et al. Neuromechanism Study of Insect-Machine Interface: Flight Control by Neural Electrical Stimulation. PLoS ONE. 9 (11), e113012 (2014).
  19. Tsang, W. M., et al. Flexible Split-Ring Electrode for Insect Flight Biasing Using Multisite Neural Stimulation. IEEE Trans. Biomed. Eng. 57 (7), 1757-1764 (2010).
  20. Barron, A. B. Anaesthetising Drosophila for behavioural studies. J. Insect Physiol. 46 (4), 439-442 (2000).
  21. Cooper, J. E. Anesthesia, Analgesia, and Euthanasia of Invertebrates. ILAR Journal. 52 (2), 196-204 (2011).
  22. Miller, T. A. . Insect neurophysiological techniques. , (2012).
  23. Leary, S., et al. . AVMA guidelines for the euthanasia of animals. , (2013).
  24. Heath, B., West, G., Heard, D., Caulkett, N. Mobile Inhalant Anesthesia Techniques. in Zoo Animal and Wildlife Immobilization and Anesthesia. , 75-80 (2008).
  25. Mischiati, M., et al. Internal models direct dragonfly interception steering. Nature. 517 (7534), 333-338 (2015).
  26. Kutsch, W., Berger, S., Kautz, H. Turning Manoeuvres in Free-Flying Locusts: Two-Channel Radio-Telemetric Transmission of Muscle Activity. J. Exp. Zoolog. Part A Comp. Exp. Biol. 299 (2), 139-150 (2003).
  27. Wang, H., Ando, N., Kanzaki, R. Active Control of Free Flight Manoeuvres in a Hawkmoth, Agrius Convolvuli. J. Exp. Biol. 211 (3), 423-432 (2008).
  28. Sato, H., Maharbiz, M. M. Recent developments in the remote radio control of insect flight. Front. Neurosci. 4, (2010).
  29. Tien Van, T., et al. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation. Bioinsp. Biomim. 7 (3), 036021 (2012).
  30. Sane, S. P., Dickinson, M. H. The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204 (15), 2607-2626 (2001).
  31. de Croon, G. C., et al. Design, aerodynamics and autonomy of the DelFly. Bioinsp. Biomim. 7 (2), 025003 (2012).
  32. Ma, K. Y., Chirarattananon, P., Fuller, S. B., Wood, R. J. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science. 340 (6132), 603-607 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

115

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。