Method Article
该协议允许在单细胞和细胞群水平上对在应激条件下的细菌生长进行时间解析的描述。
分析细菌在压力条件下生长和生存的能力对于广泛的微生物学研究至关重要。描述细菌细胞对压力诱导治疗(如接触抗生素或其他抗菌化合物、辐照、非生理pH、温度或盐浓度)的反应是相关的。不同的应激处理可能会干扰不同的细胞过程,包括细胞分裂、DNA复制、蛋白质合成、膜完整性或细胞周期调节。这些影响通常与细胞规模的特定表型相关。因此,要了解压力引起的增长或生存能力不足的程度和因果关系,需要在单单元和人口一级仔细分析若干参数。这里提出的实验策略将传统的光学密度监测和电镀测定与单细胞分析技术相结合,如活细胞流细胞测量和实时显微镜成像。这种多尺度框架允许对压力条件对细菌种群命运的影响进行时间解析的描述。
该协议的总体目的是分析细菌细胞在种群和单细胞水平上受到应激处理的行为。细菌生长和生存能力传统上通过光密度监测(OD600nm)在种群一级处理,光学密度监测是细菌细胞质量合成的代理,或者通过电镀测定来确定培养物中活细胞的浓度(孔组形成单位每毫升,CFU/mL)。在正常(无压力)生长条件下,OD600nm和 CFU/mL 测量严格相关,因为细菌倍增时间直接取决于细胞质量增加1,2。然而,这种相关性经常在影响细胞质量合成3,细胞分裂4或触发细胞变变的条件下中断。一个简单的例子是由压力处理,抑制细胞分裂,导致形成丝状细菌细胞5,6。丝状细胞正常拉长,因为细胞质量合成不受影响,但它们无法分裂成活细胞。因此,培养光密度会以正常速率随时间增加,但不会增加电镀测定法(CFU/mL)确定的活细胞浓度。在这种情况下,与许多其他情况一样,光学密度和电镀测量信息丰富,但未能全面了解观察到的应力诱导效应。这些综合检测需要与单细胞分析技术相结合,以便对应力引起的生长缺陷进行深入的表征。
本文描述了一种结合四种互补实验方法的过程:(1)传统的电镀测定和基本光密度监测,分别监测细胞活力和细胞质量合成;(2)流式细胞测定,对大量细胞进行细胞大小和DNA含量参数评价;(3)显微镜快照成像分析细胞形态;(4)微流体室的延时单细胞成像,用于检查细胞命运的时间动力学。这种多尺度框架允许根据单个细胞的行为来解释全球对细胞生长和生存能力的影响。此过程可用于破译不同细菌物种对几乎所有感兴趣压力的反应,包括特定条件下的生长(即生长培养基、pH、温度、盐浓度)或接触抗生素或其他抗菌化合物。
1. 细胞培养、应力感应和取样程序
注:使用无菌培养玻璃器皿、移液器吸头和生长介质,在0.22 μm处过滤,以避免背景颗粒。在这里,细胞培养物生长在低自荧光富定义介质(见材料表)7,8。
2. 电镀测定
注:电镀测定允许测量能够在培养样品中产生CFU的细胞的浓度。此过程揭示了一个细胞分裂成两个活细胞的速度,并允许检测细胞分裂逮捕(例如,增加细胞莱沙的细菌生成时间)。
3. 流式细胞测定
注:下一节介绍细胞样本的制备,用于流式细胞测定分析。这种分析技术揭示了大量细胞的细胞大小和DNA含量的分布。如果可能,建议立即处理流式细胞测量样品。或者,一旦进行电镀和显微镜成像,样品可以保存在冰上(长达6小时),并在一天结束时同时进行分析。
4. 快照显微镜成像
注:以下部分介绍用于总体快照分析的显微镜幻灯片和图像采集的准备。此过程将提供有关细胞形态(细胞长度、宽度、形状)和核素DNA细胞内组织的信息。
5. 微流体延时显微镜成像
注:以下部分说明微流体板的制备(见材料表)、细胞加载、微流体程序和延时图像采集。此成像过程实时显示单个细胞的行为。
6. 图像分析
注:本节简要介绍处理和分析快照和延时显微镜图像的关键步骤。使用开源图像J/Fiji(https://fiji.sc/)11完成显微图像的打开和可视化。定量图像分析使用开源 ImageJ/Fiji 软件与免费 MicrobeJ 插件12(https://microbej.com)一起执行。该协议使用 MicrobeJ 5.13I 版本。
所述程序用于分析大肠杆菌K12细胞在暂时接触头孢菌素期间的行为,这是一种专门抑制细胞分裂(图1A)13的抗生素。产生与染色体DNA相关的荧光标记HU蛋白的HupA-mCherry大肠杆菌菌株用于研究整个治疗过程中染色体的动态。在(t0)和孵育后60分钟用头孢菌素(t60)分析呈指数增长的hupA-mCherry E.大肠杆菌细胞。然后,将抗生素洗掉,并分析1小时(t120)和2小时(t180)后细胞群的恢复(图1B)。
图1:细菌对应激反应的分析程序。(A) 方法的原理图.(B) 卡通说明在富中度的正常生长期间和暂时接触头孢菌素(Ceph.),从(t0)和头孢菌素洗涤后从(t60)到(t180)的细胞形态。请点击此处查看此图的较大版本。
OD 和 CFU/mL 的平行演化是有助于了解压力处理效果的第一个指标。这两个参数在不受干扰的生长过程中是严格相关的,但往往在压力下是分离的,并且独立进化。在头孢菌素的存在下生长的细胞培养物表现出类似的OD600nm增加,如无应力培养物(图2A),表明该药物不影响细胞质量合成。然而,当头孢菌素存在时,由于细胞分裂受到严格抑制,活细胞的浓度没有增加(图2B)。当头孢菌素被移除并最终达到相当于无压力培养物(t180)的浓度时,细胞又开始分裂。这些结果反映了头孢菌素的细菌抑制作用,诱导细胞分裂完全可逆的抑制作用。不同的应力将导致不同的OD和CFU/mL曲线的脱钩,这取决于诱导的效果(例如,细胞形态的修饰,如丝状或凸起,细胞死亡与或没有莱沙)。图2C给出了一个非详尽无遗的可能结果列表,表明不同的应力诱导效应。
图2:未治疗和头孢素处理细胞在种群层面的细菌生长监测。(A) 光密度监测(OD600nm/mL)。(B) 未经处理和头孢菌素-60min处理培养物中活细胞(CFU/mL)的浓度。误差条指示实验三次的标准偏差。(C) 可能结果和相关应力效应的原理图.请点击此处查看此图的较大版本。
单细胞分析对于准确解释在总体水平上观察到的压力反应至关重要。流式细胞测定允许检查数千个细胞的细胞大小和DNA含量14,15(图3)。接触头孢菌素引起细胞大小和DNA含量的平行增加(t60)。当头孢菌素被移除时,细胞大小和DNA含量逐渐下降,变得类似于t180时的无压力种群。这些结果表明,头孢菌素没有抑制DNA复制,并引发含有多个染色体等价物的丝状细胞的形成。当药物被冲走时,这些细丝被分成细胞大小正常和DNA含量的细胞。对于抑制DNA合成的应力,流式细胞学的结果将大不相同,导致形成只包含一条非复制染色体的丝状细胞。在这种情况下,细胞大小也会增加,但不会与DNA含量的增加相关。
图3:未经处理和头孢素-60min处理细胞的代表性流细胞测定分析。(A) 细胞大小分布直方图 (FSC-H)。(B) DNA含量直方图 (FL1-SYTO9)。n = 分析的120,000个细胞。请点击此处查看此图的较大版本。
快照显微镜成像用于检查HU-mCherry定位显示的DNA的细胞形态和细胞内组织(图4A)。Cephalexin引发长细胞的形成,细胞宽度正常,没有分裂性。这些光滑的细丝包含定期间隔的DNA结构称为核体,确认头孢子素不影响染色体复制和分离。定量图像分析在很大程度上证实了细胞大小和DNA含量增加,以前观察到的流式细胞测定(图4B,C)。对于诱发DNA损伤的应力,结果将大不相同,导致形成丝状细胞,其中复制仍在继续,但分离受损。在这种情况下,细胞大小和DNA含量也会增加,但细胞将包含单个非结构化的DNA质量。快照图像还可以显示其他类型的异常细胞形状或存在微型、ANeate 或裂变细胞(鬼细胞)。
图4:未经处理和头孢素-60min处理细胞的显微镜快照分析。(A) 显示相色对比度(灰色)和 HU-mCherry 信号(红色)的代表性显微镜图像。(B) 细胞长度分布直方图.刻度条 = 5 μm . (C) 每个细胞核素数量的直方图。对每个样本的800至2,000个细胞进行了分析。请点击此处查看此图的较大版本。
与微流体装置16相关的延时显微镜有助于确定先前观察到的表型,并提供有关生长缺陷的发展和因果关系的其他见解。延时图像(图5A和电影1)证实细胞伸长(细胞质量合成)和染色体复制和分离不受接触头孢菌素的抑制。此外,它揭示了当头孢菌素被移除时的恢复过程。对丝状细胞系的分析表明,细胞分裂在洗掉药物后重新启动+20分钟(图5B)。由此产生的分裂细胞是可行的,因为它们反过来分裂,最终导致形成33个细胞表现出正常大小和DNA含量。这允许在实验的 180 分钟内计算 ±31 分钟的总生成时间,这与 CFU/mL 测量中无应力总体计算的生成时间(+33 分钟)类似。
图5:头孢子素-60min处理细胞的显微镜延时分析。(A) 显示相色对比度(灰色)和 HU-mCherry 信号(红色)的代表性显微镜图像。监测的丝状细胞由白色轮廓指示,用不同颜色分割细胞。比例尺 = 5 μm . (B) 与面板 (A) 和影片 1对应的丝状细胞系的架构表示。请点击此处查看此图的较大版本。
电影1:大肠杆菌HU-mCherry用头孢菌素处理的微流体电影。在60分钟后注射Cephalexin,然后注射新的RDM培养基3小时,以黄色表示时间(每10分钟1帧)。比例尺 = 5 μm.请点击此处观看此视频(右键单击下载)。
在手术过程中,必须注意细胞的生长状态。在达到完全指数阶段之前,在几代人中生长细胞。为了这种方法的成功,必须同时收集所有细胞样本,最好同时分析一个经过处理的培养体和一种未经处理的培养体。显微镜成像的细胞样本必须在整个过程中保持在实验温度。然后,在实验开始前预热显微镜室和微流体室至关重要。如果流式细胞学的细胞样本不能轻易分析,它们可以在冰上保存长达6小时。在冰上孵育将限制细胞的生长和形态改变。或者,用户可以考虑使用乙醇75%的细胞固定,这通常推荐用于流式细胞测定10。如果协议要求清洗介质的应力电感,则离心机和移液器细胞会非常小心,以避免损坏潜在的异常细胞。
流式细胞学和快照分析都允许访问细胞大小和DNA含量参数,快照提供细胞形态的其他观察。如果没有荧光融合来观察感兴趣的生物体中的核素,可以使用DAPI 10(4',6-diamidino-2-phenylindole)或其他稳定的DNA染料进行DNA染色。如果无法执行流式细胞学分析,则通过显微镜对大量细胞进行成像和分析非常重要。
显微镜成像也可以使用携带荧光融合的菌株对涉及特定兴趣途径的蛋白质进行。这将有助于揭示压力对各种细胞过程的影响,如复制、转录、细胞壁合成或细胞分裂。该方法可应用于一系列细菌,唯一的要求是微流体装置必须与细胞的形态相容。标准微流体板便于使用细胞宽度在 0.7 μm 和 4.5 μm 之间的棒状细菌。然而,需要测试球菌、奥沃科奇或其他具有特殊形状的细菌菌株。或者,如果由于设备不可用或细菌菌株不兼容而无法进行微流体实验,则可以在加玫瑰安装的幻灯片上进行延时成像,最长持续时间为 2 小时。
这种多尺度分析的总体优势是提供压力感应对细菌生长能力几个方面(即大规模合成、细胞活力、细胞形态、膜完整性、DNA含量)和途径的影响的全球视野。这些在压力条件下生长的细菌种群中随时间而进化。它还允许在单细胞水平和种群水平上分析正常生长的恢复。该方法适用于广泛的细菌种类和几乎任何类型的压力处理,如接触抗生素或其他抗菌化合物,分析与多物种中其他生物体相互作用的影响种群,或基因突变的影响。
提交人宣布没有相互竞争的利益。
作者感谢F.Cornet提供hupA-mCherry菌株,A.Dedieu提供细胞学技术援助,A.杜克雷特帮助MicrobeJ。资助:C. 莱斯特林承认Inserm和CNRS机构以及ATIP-Avenir项目、斯伦贝谢教育和研究基金会(FSER 2019)、ANR对PlasMed研究项目(ANR-18-CE35-0008)的资助以及FINOVI为J.Cayron提供资金;为流动细胞仪设备提供资金的拉利格癌症。作者投稿:C.L.和J.C.设计了程序并撰写了论文;J.C.进行了实验并分析了数据。
Name | Company | Catalog Number | Comments |
Agarose | BioRad | 1613100 | Certified molecular biology agarose |
Attune NxT Acoustic Focusing Cytometer | ThermoFisher scientific | A24858 | Cytometer |
CellASIC ONIX Microfluidic System | Merck Millipore | CAX2-S0000 | Microfluidic system |
CellASIC ONIX2 FG | Merck Millipore | ONIX2 1.0.1 | Microfluidic software |
CellASIC ONIX2 Manifold Basic | Merck Millipore | CAX2-MBC20 | Manifold system |
CytoOne 96-well plate with lid | Starlab | CC7672-7596 | Microplate with 0,2 mL well working volume and clear flat bottom, for automated plate reader |
E. coli strain carrying a chromosomal insertion for a hupA-mCherry fusion | Created by P1 transduction of hupA-mCherry in E. coli MG1655 | ||
Fiji | ImageJ | https://fiji.sc/ | Image software. Cite Schindelin et al. if used in publication |
Gene Frame | Thermo Scientific | AB-0578 | Blue frame (125 μL, 1,7 x 2,8 cm) |
Luria-Broth agarose medium | MP Biomedicals | 3002232 | Growth medium for plating assay |
MicrobeJ | Imagej/Fiji plugin | https://www.microbej.com/ | Microscopy image analysis plugin. Cite Ducret et al. If used in publication; Detection settings: For bacteria : Area (μm2): 0,1-max; Length (μm): 0,5-max; Width (μm): 0,6-max; Range (μm): 0,5-max; Angularity (rad): 0-0,3; 0-max for all other parameters. For nucleoid: Tolerance: 500; Threshold: Local; 0-max for all other parameters |
Microfluidic Plates CellASIC ONIX | Merck Millipore | B04A-03-5PK | Plate for Microfluidic system |
Microscope Nikon eclipse Ti | Nikon | Fluorescence microscope | |
MOPS EZ Rich Defined Medium (RDM) | Teknova | M2105 | Growth rich medium, 10x MOPS Mixture, 0,132 M K2HPO4, 10x AGCU, 5x Supplement EZ, 20% Glucose. Filtered at 0,22 μm |
SYTO9 Green Fluorescent Nucleic Acid Stain | ThermoFisher scientific | S34854 | DNA fluorescent dye |
TECAN Infinite M1000 | TECAN | 30034301 | Automated plate reader |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。