登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

我们提出了基于马铃薯病毒X(PVX)的microRNA沉默(VbMS)系统的详细方案,以功能性地表征马铃薯中的内源性microRNA(miRNA)。将目标miRNA的靶向拟态(TM)分子整合到PVX载体中,并在马铃薯中瞬时表达,以沉默靶miRNA或miRNA家族。

摘要

基于病毒的microRNA沉默(VbMS)是一种快速有效的工具,用于植物中microRNA(miRNA)的功能表征。VbMS系统已被开发并应用于各种植物物种,包括 Nicotiana benthamiana,番茄,拟南芥,棉花和单子叶植物,如小麦和玉米。在这里,我们描述了一个详细的方案,使用基于PVX的VbMS载体来沉默马铃薯中的内源性miRNA。为了降低特定miRNA的表达,设计了目标miRNA的靶向模拟(TM)分子,将其整合到植物病毒载体中,并通过 农杆菌 浸润在马铃薯中表达,以直接与感兴趣的内源性miRNA结合并阻断其功能。

引言

植物微RNA (miRNA) 的特征是 20–24 个核苷酸长、核编码的调节性 RNA1 ,在植物生物过程的几乎每个方面都起着重要作用,包括生长和发育23、光合作用和代谢4567、激素合成和信号传导89、生物和非生物反应10111213,以及营养和能量调节1415。植物miRNA的调节作用是良好编程的,通常在转录后水平上通过切割或翻译抑制靶标mRNA来实现。

在马铃薯中miRNA的鉴定、转录谱分析和靶标预测方面取得了巨大进展161718192021。然而,由于缺乏高效和高通量的遗传方法,包括马铃薯在内的植物中miRNA的功能表征落后于其他生物体。通过标准功能丧失分析对单个miRNA进行功能分析具有挑战性,因为大多数miRNA属于具有相当遗传冗余的家族22。此外,单个miRNA可以控制多个靶基因23 ,几个不同的miRNA可以协同调节相同的分子途径2425。这些特性使得难以表征特定miRNA或miRNA家族的功能。

miRNA的大部分功能分析在很大程度上依赖于具有明显局限性的功能增益方法。人工miRNA(amiRNA)方法利用内源性原代转录本(pri-miRNA)在高水平上产生miRNA,从而抑制靶基因表达26272829。然而,使用强本构35S启动子的活化标记和miRNA过表达通常会导致miRNA的表达升高,这些表达不代表体内条件,因此可能无法反映miRNA30的内源性功能。已经开发了一种替代方法,涉及表达在结合和/或切割位点中含有不易脱位突变的靶基因的miRNA抗性形式313233。但是,由于转基因伪影,这种方法也可能导致对源自miRNA耐药靶基因的表型的误解。因此,应谨慎从这些功能获得研究中得出结论34。上述方法的另一个主要局限性是它们需要转换,这是劳动密集型和耗时的。此外,转基因依赖性方法几乎不适用于顽固的植物物种。因此,必须开发一种快速有效的功能丧失方法来解开miRNA的功能。

为了绕过转化过程的先决条件,通过将靶向模拟(TM)策略与病毒衍生载体相结合,建立了基于病毒的microRNA沉默(VbMS)。在VbMS系统中,人工设计的TM分子从病毒骨架瞬时表达,为解剖植物内源性miRNA的功能提供了一种功能强大,高通量和省时的工具3536。VbMS最初是在边 和番茄中与烟草拨浪鼓病毒(TRV)353637 一起开发的,并且已经扩展到拟南芥,棉花,小麦和玉米,使用各种其他病毒表达系统,包括马铃薯病毒X(PVX)38,棉花屑病毒(ClCrV)39,黄瓜花叶病毒(CMV)404142,中国小麦花叶病毒(CWMV)43和大麦条纹花叶病毒(BSMV)4445

马铃薯(Solanum tuberosum)是世界上第四大粮食作物,也是种植最广泛的非藜麦作物,主要是因为它具有高营养价值、高能量产量和相对较低的投入要求46。马铃薯的几个特点使其成为一种有吸引力的双子叶植物模型植物。它是一种营养繁殖的多倍体作物,具有高越交率,杂合性和遗传多样性。然而,迄今为止,还没有报告使用VbMS表征马铃薯中miRNA的功能。在这里,我们提出了一种基于结扎独立克隆(LIC)的马铃薯PVX的VbMS方法来评估miRNA在马铃薯植物中的功能38。我们选择了miR165/166家族来说明VbMS测定,因为miR165/166家族及其靶标mRNA和III类同源域/Leu拉链(HD-ZIP III)转录因子已被广泛表征224748HD-ZIP III 基因是分生组织发育和器官极性的关键调节因子,miR165/166功能的抑制导致 HD-ZIP III 基因表达增加,导致顶端优势降低和叶极性异常模式等多向性发育缺陷22353841.与miRNA165/166沉默相关的易于评分的发育表型能够准确评估基于PVX的VbMS测定的有效性。

在这项研究中,我们证明了基于PVX的VbMS系统可以有效地阻断马铃薯中miRNA的功能。由于基于PVX的病毒诱导基因沉默(VIGS)系统已经在许多马铃薯品种中建立49505152,因此这种基于PVX的VbMS方法可能适用于广泛的二倍体和四倍体马铃薯品种。

研究方案

1. 种植马铃薯植物。

  1. 用Murashige和Skoog(MS)培养基加上Gamborg维生素(MS基盐混合物,Gamborg维生素,30g / L蔗糖,3.5 g / L琼脂,pH = 5.7)在培养管(25 x 150 mm)中繁殖马铃薯植物。将试管置于生长室中,温度为20-22°C,16小时光照/ 8小时黑暗光周期,光强度为120μmol/ m2s1
    注意:新芽和根通常在植物的1-2周内发育。每月用新鲜的MS / Gamborg维生素培养基繁殖植物。
  2. 四周后,将体外植物移植到土壤中,并在20-22°C,16小时光照/ 8小时黑暗光周期和光强度120μmol/ m2s1下的温室中生长。
    注:根叶新长的植物适合移栽。在前3-4天内保持新鲜移植植物的水分。

2. 构造 VbMS 向量。

  1. 设计并克隆短串联TM分子(STTM, 图12253 用于感兴趣的miRNA。
    注:根据实验数据或从miRbase数据库获取miRNA序列545556575859。本研究中使用的miR166序列之前已经描述过60
    1. 通过将不匹配序列(通常为5'-CTA-3')插入到miRNA的反向补体序列中来设计TM模块,该序列位于与miRNA的第10-11 核苷酸相对应的位点。
      注意:例如,Stu-miR160序列是5'-UGCCUGGCUCCCUGUAUGCC-3'61,其中10-11核苷酸以粗体显示。反向补体序列(在脱氧核苷酸中)为5'-GGCATACAGGGAGCCAGGCA-3',不匹配凸起插入位点以粗体显示。TM分子序列(脱氧核苷酸)应为5'-GGCATACAGG-CTA-GAGCCAGGCA-3'。
    2. 设计用于克隆STM片段的引物(图1)。使用具有 48-nt 间隔序列的 DNA 寡核苷酸作为 PCR 克隆的模板。正向引物由LIC1连接子(5'-CgACgACAAgACCgT-3'),上述为TM分子设计的正向序列以及48-nt间隔物的部分5'序列(5'-GTTTTGTTGTTATGGT-3')组成。反向引物由LIC2连接子(5'-gAggAgAagAgCCgT-3'),TM分子的反向补体序列和48-nt间隔物(5'-ATTCTTCTTCTTTAGACCAT-3')的3'序列的部分反向补体组成。
      注意:48-nt间隔序列是5'-GTTGTTGTTGTGTTCTAATTTAAATAATATGGTCTAAGAAGAAGAAT-3'。例如,对于STTM-miR160,前向引物应为5'-CgACgACAAgACCgT-GGCATACAGG-CTA-GAGCCAGGCA-GTTGTTGTTGTTGTTGGT-3';反向引物应为5'-gAggAgAagAgCCgT-TGCCTGGCTC-TAG-CCTGTATGCC-ATTCTTCTTCTTTAGACCAT-3'(图1)。
    3. 使用合成的通用48-nt垫片作为模板和高保真DNA聚合酶,通过PCR扩增50μL体积的STTM片段。
      1. 通过将每个引物0.5 μL(40 μM)、0.5 μL48-nt间隔物(40 μM)、5 μL 10x PCR缓冲液、1 μL dNTP混合物(每个10 mM)、0.1 μL高保真DNA聚合酶(10 U/μL)和43 μL ddH2O混合至总体积为50 μL来设置PCR反应。 94°C 3分钟,32次循环94°C持续45秒,60°C循环45秒,72°C循环60秒。
    4. 通过乙醇沉淀纯化STTM片段。向PCR产物中加入2.5体积的乙醇和1/10体积的3M乙酸钠(pH = 4.0)。剧烈混合并以14,000× g 离心10分钟。除去上清液并用1mL 70%乙醇冲洗沉淀。干燥沉淀并将其溶解在20μL的ddH 2 O中。
      注:使用DNA电泳检查STTM PCR产物的扩增。
    5. 通过将2.5μL纯化的STTM PCR产物,0.5μL10x T4 DNA聚合酶缓冲液,0.05μL1M二硫脑油醇(DTT),0.25μL100mM dATP,0.1μLT4 DNA聚合酶(3 U / μL)和1.6μLdH2O混合至总体积为5μL,在冰上建立T4 DNA聚合酶反应。 并在75°C下处理产物20分钟以灭活T4 DNA聚合酶。
  2. 准备基于 PVX 的 VbMS 构造。
    1. 在100μL的体积中消化5μgPVX-LIC质粒38和2.5μLSmaI(20 U / μL)。
    2. 向消化后的PVX-LIC产品中加入等体积的苯酚:氯仿:异丙醇(25:24:1,pH = 6.7/8.0)并剧烈混合。以14,000× g 离心10分钟,并将上清液转移到新的离心管中。加入等体积的氯仿:异丙醇(24:1)并剧烈涡旋。以14,000× g 离心10分钟。
      注:PVX-LIC 载体包含用于克隆的 LIC 盒。PVX-LIC载体的LIC盒含有 ccdB 基因和耐氯霉素基因,需要使用含有卡那霉素(50μg/ L)和氯霉素(15μg/ L)的LB培养基在 大肠杆菌 菌株DB3.1中维持/繁殖。
    3. 将上清液转移到新的离心管中。加入2.5体积的乙醇和1/10体积的3M乙酸钠(pH = 4.0)并剧烈混合。以14,000× g 离心10分钟,除去上清液。
    4. 用1mL 70%乙醇冲洗沉淀并剧烈涡旋。以14,000× g 离心10分钟,除去上清液。干燥沉淀并用100μLddH 2O溶解消化的PVX-LIC质粒。
    5. 通过将2.5μL消化的PVX-LIC载体DNA,0.5μL10x T4 DNA聚合酶缓冲液,0.05μL1 M DTT,0.25μL100mM dTTP和0.1μLT4 DNA聚合酶(3 U / μL)混合在冰上建立T4 DNA聚合酶反应。将混合物在37°C下孵育15分钟,并在75°C下处理产物20分钟至20分钟灭活T4 DNA聚合酶。
  3. 使用 LIC 反应将 STTM 序列克隆到 PVX-LIC 载体中。混合T4 DNA聚合酶处理的STTM PCR产物(5μL)和T4 DNA聚合酶处理的PVX-LIC质粒(5μL)。在70°C下孵育5分钟,以0.1°C / s的斜坡冷却至22°C,并使用PCR机器在22°C下保持30分钟。
    注意:将孵育时间延长至4°C过夜,以实现更高的LIC克隆效率。
  4. 将5μL的LIC反应产物转化为 大肠杆菌 DH5α,并在含有50μg/ mL卡那霉素的LB板上生长6263。通过PCR选择阳性菌落,并使用PVX-LIC载体的克隆引物和通用引物,然后进行测序。
    1. 使用 PVX-LIC 正向引物 (5'-GTGTTGGCTTGCAAACTAGAT-3') 结合用于 STTM 克隆的反向引物进行菌落 PCR,以鉴定阳性克隆。PCR条带的大小应为~300 bp。
      注:通过终止器循环测序验证STTM片段的序列6465
  5. 从经过验证的克隆中分离PVX-STTM质粒,并将其转化为农杆菌菌株GV3101,GV2260或EHA1056263。通过 PCR 验证农杆菌菌落。
    注:使用 PVX-LIC 的正向引物和 STTM 克隆的反向引物通过 PCR 确认 农杆菌菌 落。

3. 在马铃薯植物中执行基于 PVX 的 VbMS 测定。

  1. 将4周龄的体外马铃薯植物移植到土壤中。移植的植物将在3-4天后进行VbMS测定。
  2. 用含有PVX-STTM质粒的 农杆菌 接种马铃薯植物。
    注意:对于马铃薯中的VbMS测定,同时进行 农杆菌介导的浸润和牙签刮擦接种。
    1. 将含有 PVX-STTM 载体的阳性转化剂选取并接种到含有 50 μg/mL 卡那霉素和 50 μg/mL 利福平的 50 mL 液体 LB 中。在28°C培养箱中以220rpm生长16小时,直到OD 600 = 1.0。
    2. 同时,将阳性的农杆菌菌落划到至少两个含有50μg/ mL卡那霉素和50μg/ mL利福平的新LB板上,并在28°C下生长1天。包括 PVX-LIC3866 载体作为对照,将 PVX-GFP6768 作为监测病毒传播。
    3. 通过在室温下以3,400×g离心10分钟收集农杆菌液体培养物。重悬具有等体积浸润缓冲液(10 mM MgCl2,10 mM MES和200μM乙酰汗根,pH = 5.6)的农杆菌细胞,并调节至OD 600 = 1.0。在室温下孵育6小时。
    4. 用1mL无针注射器将 农杆菌 培养物浸润到完全膨胀的叶子的轴侧。
      1. 翻转并用一只手握住叶子,然后用一根手指从浸润部位的轴侧支撑叶片。用另一只手将注射器垂直到叶表面,并将 农杆菌 培养物浸入层的轴侧。
    5. 从LB板中刮下 农杆菌培养物 ,并用牙签刮擦浸润的马铃薯植物的前一个或两个节间的茎表面。轻轻划伤茎的表皮。避免刺穿茎,这可能会对植物造成严重损害。
  3. 在温室中以16小时光照/ 8小时黑暗光周期和120μmol/ m2s1 的光强度在22°C下生长浸润的植物。
    注意:由miRNA沉默引起的表型通常出现在接种后2-4周(图2图3)。浸润后 VbMS 表型通常需要 10–20 天才能出现。VbMS表型取决于特定miRNA和靶基因的特性、生长条件和马铃薯品种。

4. 执行表达式分析。

  1. 当表型出现在接种后2-4周时,用剪刀从VbMS植物中收集具有表型的组织,例如芽,叶,花或根,以及来自对照植物的组织。从收集的组织中分离总RNA。
  2. 通过电泳检查RNA质量6263 ,并通过用分光光度计测量OD260 吸光度来量化RNA浓度。
  3. 使用茎环实时逆转录聚合酶链反应 (RT-PCR) 分析 miRNA 表达。
    1. 对于特定的miRNA,设计一个茎环逆转录引物。茎环RT引物包含一个通用的5'主链和一个3'6-nt的特异性miRNA延伸。设计一个5'通用骨架(5'-GTCTCCTCTGGTGCagggtccgaggtattcGCACCAGAGGAGAC-3'),形成茎环结构。(大写对应于反向重复序列,小写对应于循环区域)。
    2. 形成环路的5'骨架序列的一部分用作后续PCR扩增的反向引物(骨架序列中的粗体斜体序列)。向茎环引物添加一个与感兴趣的miRNA的3'端反向互补的6-nt延伸序列,以提供逆转录的特异性(补充图1A)。
      注意:设计Chen等人69和Erika Varkonyi-Gasic等人描述的茎环逆转录引物,如707172所述。例如,Stu-miR160的茎环逆转录引物被设计为5'-GTCTCCTCTGGTGCagggtccggtattcGCACCAGAGGAGACGGCATA-3'。马铃薯miR165/166家族的茎环逆转录引物被设计为5'-GTCTTCTGGTGCagggtccgaggtattcGCACCAGAGGAGACGGGGGG(A/G)A-3'。(粗体大写序列提供了特定miRNA逆转录的特异性)。
    3. 通过在冰上混合50-200ng总RNA,1μL茎环逆转录引物(100μM),2μL10x缓冲液,0.2μLRNase抑制剂(40 U / μL),0.25μLdNTPs(每个10mM)和1μL逆转录酶(200 U / μL)来设置逆转录反应。将不含核酸酶的ddH 2 O加入到20μL的总体积中。
    4. 使用脉冲逆转录程序执行逆转录。将逆转录反应混合物在16°C孵育30分钟,进行30°C的温度循环30秒,42°C30 s和50°C共1 s的温度循环,共60个循环,并通过在85°C下孵育5分钟来灭活逆转录酶。
    5. 对于miRNA表达的实时PCR分析,请根据miRNA序列设计正向引物,但不包括与上述设计的茎环逆转录引物重叠的序列。在前向引物的5'处添加3-7-nt延伸,以优化长度,熔化温度和GC含量(补充图1)。
      注意:通用反向引物是5'-GTGCAGGGTCCGAGGT-3'。例如,Stu-miR160的茎环逆转录引物被设计为5'-CGGCTGCCTGGCTCC-3'。miR165/166家族的茎环逆转录引物是5'-CGGCTCGGACCAGGCTT-3'。粗体序列用作引物优化的5'扩展。用于miRNA的茎环逆转录引物和实时荧光定量PCR引物可以使用miRNA引物设计工具73进行设计。
  4. 通过标准逆转录聚合酶链反应 (RT-PCR) 合成靶标 mRNA 的 cDNA。将逆转录反应混合物在37°C下孵育60分钟,并通过加热至85°C灭活逆转录酶5分钟。
    注意:(1)如果靶标mRNA未知,则使用psRNA靶向程序74 预测靶标mRNA。(2)mRNA的通用逆转录引物是锚定引物5'-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
  5. 为目标 miRNA 和靶 mRNA 设置实时荧光定量 PCR 反应。在冰上混合0.5μL模板cDNA,5μL2x实时PCR缓冲液与SYBR绿色,0.05μL每个正向和反向引物(40μM)和4.4μLdH 2 O,总体积为5μL。
  6. 在95°C下孵育3分钟,在95°C下循环40次3秒,60°C孵育30秒。执行随后的熔融曲线分析,如下所示:在95°C下孵育15 s,在20°C / s的斜坡下冷却至60°C,在60°C下保持60 s,在0.2°C / s的斜坡上加热至95°C,并在95°C下保持15 s。使用ΔΔCt方法分析Ct7677并绘制具有标准误差的均值。
    注:(1)靶标mRNA的实时荧光定量PCR引物可以按所述设计75。(2)马铃薯 多泛素10 基因可作为马铃薯正常化的内部对照。马铃薯 多泛素10 基因的前向引物为5'-ATGTTGCCTTTTTTGTGTGGTTG-3',反向引物为5'-TTATTTATTCACATAACACGACAGTC-3'。(3)对于实时荧光定量PCR分析,污染和引物二聚体的形成可能会产生假阳性结果。为了监测非特异性扩增并增加实时荧光定量 PCR 分析的责任,建议在实时荧光定量 PCR 测定中包括不带模板和逆转录酶的对照。

结果

图2 显示了PVX-STTM165/166马铃薯植株(Katahdin),其叶组织从叶片的轴侧沿叶脉异位生长。还观察到更严重的表型,如喇叭形叶的形成。相比之下,在PVX控制工厂中没有观察到表型异常。这些结果表明,VbMS系统可有效抑制四倍体马铃薯植株的内源性miRNA功能,PVX-VbMS系统是确定特定miRNA或miRNA家族功能的强大遗传工具。

图3 显示了PVX-STTM...

讨论

我们提出了一种基于PVX的miRNA沉默系统,通过将STTM设计整合到PVX载体中来表征马铃薯中内源性miRNA的功能。VbMS系统被证明可以有效地沉默马铃薯中的miRNA165/166,马铃薯是跨植物物种的高度保守的miRNA家族。

TM方法已被开发用于干扰基于人工miRNA靶标模拟的miRNA的表达,该拟态旨在在miRNA互补序列内的预期切割位点处创建不匹配环,从而导致靶向miRNA的封存并阻止其活性

披露声明

没有。

致谢

我们感谢清华大学的廖玉乐博士提供PVX-LIC载体。这项工作得到了德克萨斯州A&M AgriLife Research的启动基金和美国农业部国家食品和农业研究所的Hatch Project TEX0-1-9675的支持。

材料

NameCompanyCatalog NumberComments
100 µM dATP and 100 µM dTTPOmega Bio-tek, Inc., Norcross, Norcross, GA 30071 , USATQAC136
3 M Sodium acetate, pH 4.0.Teknova, Hollister, CA 95023, USA#S0297
AcetosyringoneTCI America, Portland, OR 97203, USAD2666-25G
Agrobacterium tumefaciens strains: GV3101, GV2260 or EHA105.
ChloroformVWR Corporate, Radnor, PA 19087-8660, USAVWRV0757-950ML
Dimethyl sulfoxide, DMSOTCI America, Portland, OR 97203, USAD0798-25G
DTTVWR Corporate, Radnor, PA 19087-8660, USAVWRV0281-25G
E. coli DB3.1for maintenance of PVX-LIC and pTRV2e containing the ccdB gene
E. coli DH5αfor the destination constructs generated by LIC cloning
Fertilizer: Peters Peat Lite Special 15-0-15 Dark Weather FeedICL Specialty Fertilizers, Summerville, SC 29483, USAG99260
High fidelity PCR reagents: KAPA HiFi DNA Polymerase with dNTPsRoche Sequencing and Life Science, Kapa Biosystems,
Wilmington, MA, USA
7958960001
Isoamyl alcoholVWR Corporate, Radnor, PA 19087-8660, USAVWRV0944-1L
Koptec Pure Ethanol – 200 ProofDecon Labs, King of Prussia, PA 19406 , USAV1005M
MESTCI America, Portland, OR 97203, USAM0606-250G
MgCl2ThermoFisher, Waltham, MA 02451, USAMFCD00149781
M-MuLV Reverse TranscriptaseNew England BioLabs, Ipswich, MA 01938-2723 USAM0253L
Nano-drop spectrometer: NanoDrop OneC Microvolume UV-Vis Spectrophotometer with Wi-FiThermoFisher, Waltham, MA 02451, USAND-ONEC-W
PCR machine: Bio-Rad MyCycler PCR SystemBio-Rad, Hercules, California 94547, USA170-9703
PCR machine: Eppendorf Mastercycler proEppendorf, Hauppauge, NY 11788, USA950030010
pH meterSper Scientific, Scottsdale, AZ 85260, USABenchtop pH / mV Meter - 860031
Phenol:chloroform:isoamyl alcohol (25:24:1), pH 6.7/8.0.VWR Corporate, Radnor, PA 19087-8660, USAVWRV0883-400ML
Phytagel: Gellan GumAlfa Aesar, Tewksbury, MA 01876, USAJ63423-A1
PVX VIGS vector: PVX-LICZhao et al., 2016
Real-time PCR machine: QuantStudio 6 Flex Real-Time PCR SystemThermoFisher, Waltham, MA 02451, USA4485697
Real-time PCR reagent: KAPA SYBR® FAST qPCR Master Mix (2x) KitRoche Sequencing and Life Science, Kapa Biosystems,
Wilmington, MA 01887, USA
7959389001
Restriction enzyme: SmaINew England BioLabs, Ipswich, MA 01938-2723 USAR0141S
Reverse transcription reagents: qScript cDNA SuperMixQuanta BioSciences, Gaithersburg, MD 20877 , USA95107-100
RNA extraction Kit: E.Z.N.A. Plant RNA KitOmega Bio-tek, Inc., Norcross, Norcross, GA 30071 , USASKU: D3485-01
RNase Inhibitor MurineNew England BioLabs, Ipswich, MA 01938-2723 USAM0314L
RNAzol RTSigma-Aldrich, St. Louis, MO 63103, USAR4533
Soil: Metro-Mix 360Sun Gro Horticulture, Agawam, MA 01001-2907, USAMetro-Mix 360
T4 DNA polymerase and bufferNew England BioLabs, Ipswich, MA 01938-2723 USAM0203S

参考文献

  1. Axtell, M. J., Meyers, B. C. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data. The Plant Cell. 30 (2), 272-284 (2018).
  2. Chen, X. Small RNAs and Their Roles in Plant Development. Annual Review of Cell and Developmental Biology. 25 (1), 21-44 (2009).
  3. Rubio-Somoza, I., Weigel, D. MicroRNA networks and developmental plasticity in plants. Trends in Plant Science. 16 (5), 258-264 (2011).
  4. Zhang, J. -. P., et al. MiR408 Regulates Grain Yield and Photosynthesis via a Phytocyanin Protein. Plant Physiology. 175 (3), 1175-1185 (2017).
  5. Gupta, O. P., Karkute, S. G., Banerjee, S., Meena, N. L., Dahuja, A. Contemporary Understanding of miRNA-Based Regulation of Secondary Metabolites Biosynthesis in Plants. Frontiers in Plant Science. 8 (374), (2017).
  6. May, P., et al. The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nature Communications. 4 (1), 2145 (2013).
  7. Krützfeldt, J., Stoffel, M. MicroRNAs: A new class of regulatory genes affecting metabolism. Cell Metabolism. 4 (1), 9-12 (2006).
  8. Damodharan, S., Corem, S., Gupta, S. K., Arazi, T. Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. The Plant Journal. 96 (4), 855-868 (2018).
  9. Nizampatnam, N. R., Schreier, S. J., Damodaran, S., Adhikari, S., Subramanian, S. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. The Plant Journal. 84 (1), 140-153 (2015).
  10. Chinnusamy, V., Zhu, J., Zhu, J. -. K. Cold stress regulation of gene expression in plants. Trends in Plant Science. 12 (10), 444-451 (2007).
  11. Covarrubias, A. A., Reyes, J. L. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant, Cell, Environment. 33 (4), 481-489 (2010).
  12. Wang, S., et al. Suppression of nbe-miR166h-p5 attenuates leaf yellowing symptoms of potato virus X on Nicotiana benthamiana and reduces virus accumulation. Molecular Plant Pathology. 19 (11), 2384-2396 (2018).
  13. Canto-Pastor, A., et al. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proceedings of the National Academy of Sciences. 116 (7), 2755-2760 (2019).
  14. Chiou, T. -. J., Lin, S. -. I. Signaling Network in Sensing Phosphate Availability in Plants. Annual Review of Plant Biology. 62 (1), 185-206 (2011).
  15. Sunkar, R., Chinnusamy, V., Zhu, J., Zhu, J. -. K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science. 12 (7), 301-309 (2007).
  16. Kwenda, S., Birch, P. R. J., Moleleki, L. N. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection. BMC Genomics. 17 (1), 614 (2016).
  17. Lakhotia, N., et al. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biology. 14 (1), 6 (2014).
  18. Koc, I., Filiz, E., Tombuloglu, H. Assessment of miRNA expression profile and differential expression pattern of target genes in cold-tolerant and cold-sensitive tomato cultivars. Biotechnology, Biotechnological Equipment. 29 (5), 851-860 (2015).
  19. Zhang, N., et al. Identification of Novel and Conserved MicroRNAs Related to Drought Stress in Potato by Deep Sequencing. PLoS One. 9 (4), 95489 (2014).
  20. Xie, F., Frazier, T. P., Zhang, B. Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene. 473 (1), 8-22 (2011).
  21. Zhang, R., Marshall, D., Bryan, G. J., Hornyik, C. Identification and Characterization of miRNA Transcriptome in Potato by High-Throughput Sequencing. PLoS One. 8 (2), 57233 (2013).
  22. Yan, J., et al. Effective Small RNA Destruction by the Expression of a Short Tandem Target Mimic in Arabidopsis. The Plant Cell. 24 (2), 415-427 (2012).
  23. Roodbarkelari, F., Groot, E. P. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis. New Phytologist. 213 (1), 95-104 (2017).
  24. Reichel, M., Millar, A. A. Specificity of plant microRNA target MIMICs: Cross-targeting of miR159 and miR319. Journal of Plant Physiology. 180, 45-48 (2015).
  25. Taylor, R. S., Tarver, J. E., Hiscock, S. J., Donoghue, P. C. J. Evolutionary history of plant microRNAs. Trends in Plant Science. 19 (3), 175-182 (2014).
  26. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., Weigel, D. Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. The Plant Cell. 18 (5), 1121-1133 (2006).
  27. Martin, A., et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development. 136 (17), 2873-2881 (2009).
  28. Yang, L., et al. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. Journal of Integrative Plant Biology. 57 (12), 1078-1088 (2015).
  29. Tang, Y., et al. Virus-based microRNA expression for gene functional analysis in plants. Plant Physiology. 153 (2), 632-641 (2010).
  30. Voinnet, O. Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell. 136 (4), 669-687 (2009).
  31. Teotia, S., Tang, G. To Bloom or Not to Bloom: Role of MicroRNAs in Plant Flowering. Molecular Plant. 8 (3), 359-377 (2015).
  32. Wu, G., Poethig, R. S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development. 133 (18), 3539-3547 (2006).
  33. Zhao, L., Kim, Y., Dinh, T. T., Chen, X. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. The Plant Journal. 51 (5), 840-849 (2007).
  34. Li, J., Millar, A. A. Expression of a microRNA-Resistant Target Transgene Misrepresents the Functional Significance of the Endogenous microRNA: Target Gene Relationship. Molecular Plant. 6 (2), 577-580 (2013).
  35. Sha, A., et al. Virus-based microRNA silencing in plants. Plant Physiology. 164 (1), 36-47 (2014).
  36. Zhao, J., Liu, Y. Virus-based MicroRNA Silencing. Bio-protocol. 6 (2), 1714 (2016).
  37. Yan, F., et al. A virus-based miRNA suppression (VbMS) system for miRNA loss-of-function analysis in plants. Biotechnology Journal. 9 (5), 702-708 (2014).
  38. Zhao, J., et al. An efficient Potato virus X-based microRNA silencing in Nicotiana benthamiana. Scientific Reports. 6, 20573 (2016).
  39. Gu, Z., Huang, C., Li, F., Zhou, X. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnology Journal. 12 (5), 638-649 (2014).
  40. Du, Z., et al. Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of cucumber mosaic virus. Plant Physiology. 164 (3), 1378-1388 (2014).
  41. Liao, Q., Tu, Y., Carr, J. P., Du, Z. An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs. Scientific Reports. 5, 13178 (2015).
  42. Liu, X., et al. Analyses of MiRNA Functions in Maize Using a Newly Developed ZMBJ-CMV-2bN81-STTM Vector. Frontiers in Plant Science. 10, 1277 (2019).
  43. Yang, J., et al. Chinese Wheat Mosaic Virus-Induced Gene Silencing in Monocots and Dicots at Low Temperature. Frontiers in Plant Science. 9, 1627 (2018).
  44. Jiao, J., Wang, Y., Selvaraj, J. N., Xing, F., Liu, Y. Barley Stripe Mosaic Virus (BSMV) Induced MicroRNA Silencing in Common Wheat (Triticum aestivum L.). PLoS One. 10 (5), 0126621 (2015).
  45. Jian, C., et al. Virus-Based MicroRNA Silencing and Overexpressing in Common Wheat (Triticum aestivum L.). Frontiers in Plant Science. 8, 500 (2017).
  46. Barrell, P. J., Meiyalaghan, S., Jacobs, J. M. E., Conner, A. J. Applications of biotechnology and genomics in potato improvement. Plant Biotechnology Journal. 11 (8), 907-920 (2013).
  47. Peng, T., et al. A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants. Molecular Plant. 11 (11), 1400-1417 (2018).
  48. Teotia, S., Zhang, D., Tang, G., Kaufmann, M., Klinger, C., Savelsbergh, A. . Functional Genomics: Methods and Protocols. , 337-349 (2017).
  49. Dommes, A. B., Herbert, D. B., Kivivirta, K. I., Gross, T., Becker, A. Virus-induced gene silencing: empowering genetics in non-model organisms. Journal of Experimental Botany. 70 (3), 757-770 (2018).
  50. Lacomme, C., Chapman, S. Use of Potato Virus X (PVX)-Based Vectors for Gene Expression and Virus-Induced Gene Silencing (VIGS). Current Protocols in Microbiology. 8 (1), 11-16 (2008).
  51. Lim, H. -. S., et al. Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology. 402 (1), 149-163 (2010).
  52. Gleba, Y., Klimyuk, V., Marillonnet, S. Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology. 18 (2), 134-141 (2007).
  53. Tang, G., et al. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods. 58 (2), 118-125 (2012).
  54. Kozomara, A., Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research. 39, 152-157 (2010).
  55. Kozomara, A., Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research. 42 (1), 68-73 (2013).
  56. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Research. 32, 109-111 (2004).
  57. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research. 34, 140-144 (2006).
  58. Griffiths-Jones, S., Saini, H. K., van Dongen, S., Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Research. 36, 154-158 (2007).
  59. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Research. 47 (1), 155-162 (2018).
  60. Yin, K., Tang, Y., Zhao, J. Genome-wide characterization of miRNAs involved in N Gene-mediated Immunity in response to tobacco mosaic virus in Nicotiana benthamiana. Evolutionary Bioinformatics. , 1-11 (2015).
  61. Dunker, F., et al. Oomycete small RNAs invade the plant RNA-induced silencing complex for virulence. bioRxiv. , 689190 (2019).
  62. Green, M. R., Sambrook, J. . Molecular Cloning. A Laboratory Mannual 4th. , (2014).
  63. Sambrook, J., Russell, D. . Molecular Cloning: A Laboratory Manual. 3rd Edition. , (2001).
  64. Anderson, S., et al. Sequence and organization of the human mitochondrial genome. Nature. 290 (5806), 457-465 (1981).
  65. Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences. 74 (12), 5463-5467 (1977).
  66. Qian, L., et al. Hsp90 Interacts With Tm-22 and Is Essential for Tm-22-Mediated Resistance to Tobacco mosaic virus. Frontiers in Plant Science. 9 (411), (2018).
  67. Voinnet, O., Baulcombe, D. C. Systemic signalling in gene silencing. Nature. 389 (6651), 553 (1997).
  68. Li, C., et al. A cis Element within Flowering Locus T mRNA Determines Its Mobility and Facilitates Trafficking of Heterologous Viral RNA. Journal of Virology. 83 (8), 3540-3548 (2009).
  69. Chen, C., et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research. 33 (20), 179 (2005).
  70. Varkonyi-Gasic, E., Hellens, R. P., Kodama, H., Komamine, A. . RNAi and Plant Gene Function Analysis: Methods and Protocols. , 145-157 (2011).
  71. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., Hellens, R. P. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 3 (1), 12 (2007).
  72. Varkonyi-Gasic, E., Kovalchuk, I. . Plant Epigenetics: Methods and Protocols. , 163-175 (2017).
  73. Czimmerer, Z., et al. A Versatile Method to Design Stem-Loop Primer-Based Quantitative PCR Assays for Detecting Small Regulatory RNA Molecules. PLoS One. 8 (1), 55168 (2013).
  74. Dai, X., Zhuang, Z., Zhao, P. X. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research. 46 (1), 49-54 (2018).
  75. Untergasser, A., et al. Primer3-new capabilities and interfaces. Nucleic Acids Research. 40 (15), 115 (2012).
  76. Livak, K. J., Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 25 (4), 402-408 (2001).
  77. Schmittgen, T. D., Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 3 (6), 1101-1108 (2008).
  78. Todesco, M., Rubio-Somoza, I., Paz-Ares, J., Weigel, D. A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana. PLoS Genetics. 6 (7), 1001031 (2010).
  79. Franco-Zorrilla, J. M., et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics. 39 (8), 1033-1037 (2007).
  80. Jiang, N., et al. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Horticulture Research. 6 (1), 28 (2019).
  81. Ivashuta, S., et al. Regulation of gene expression in plants through miRNA inactivation. PLoS One. 6 (6), 21330 (2011).
  82. Reichel, M., Li, Y., Li, J., Millar, A. A. Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnology Journal. 13 (7), 915-926 (2015).
  83. Wong, G., Alonso-Peral, M., Li, B., Li, J., Millar, A. A. MicroRNA MIMIC binding sites: Minor flanking nucleotide alterations can strongly impact MIMIC silencing efficacy in Arabidopsis. Plant Direct. 2 (10), 00088 (2018).
  84. Paschoal, A. R., Lozada-Chávez, I., Domingues, D. S., Stadler, P. F. ceRNAs in plants: computational approaches and associated challenges for target mimic research. Briefings in Bioinformatics. 19 (6), 1273-1289 (2018).
  85. Faivre-Rampant, O., et al. Potato Virus X-Induced Gene Silencing in Leaves and Tubers of Potato. Plant Physiology. 134 (4), 1308-1316 (2004).
  86. Zhao, J., et al. Virus-Induced Gene Silencing in Diploid and Tetraploid Potata Species. Methods in Molecular Biology. , (2019).
  87. Leisner, C. P., et al. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. The Plant Journal. 94 (3), 562-570 (2018).
  88. Aversano, R., et al. The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives. The Plant Cell. 27 (4), 954-968 (2015).
  89. The Potato Genome Sequencing, C. et al. Genome sequence and analysis of the tuber crop potato. Nature. 475, 189 (2011).
  90. Navarro, C., et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. 478 (7367), 119-122 (2011).
  91. Lehretz, G. G., Sonnewald, S., Hornyik, C., Corral, J. M., Sonnewald, U. Post-transcriptional Regulation of FLOWERING LOCUS T Modulates Heat-Dependent Source-Sink Development in Potato. Current Biology. 29 (10), 1614-1624 (2019).
  92. Natarajan, B., et al. MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. Journal of Experimental Botany. 69 (8), 2023-2036 (2018).
  93. Li, F., et al. MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences. 109 (5), 1790-1795 (2012).
  94. Weiberg, A., et al. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science. 342 (6154), 118-123 (2013).
  95. Huang, C. -. Y., Wang, H., Hu, P., Hamby, R., Jin, H. Small RNAs - Big Players in Plant-Microbe Interactions. Cell Host, Microbe. 26 (2), 173-182 (2019).
  96. Shahid, S., et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature. 553 (7686), 82-85 (2018).
  97. Weiberg, A., Jin, H. Small RNAs-the secret agents in the plant-pathogen interactions. Current Opinion in Plant Biology. 26, 87-94 (2015).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

159 microRNA VbMS X PVX microRNA miRNA TM STTMs

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。