JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文描述了一种新型快速光学成像仪在长衰变发射样品的宏观光致发光寿命成像中的应用。描述了集成、图像采集和分析程序,以及用于成像的传感器材料的制备和表征以及成像仪在研究生物样品中的应用。

摘要

本文提出了一种新的光致发光寿命成像仪,旨在绘制不同磷光样品中的分子氧(O 2)浓度,范围从固态O 2敏感涂层到用可溶性O2敏感探针染色的活体动物组织样品。特别是,使用了基于纳米粒子的近红外探针NanO2-IR,该探针可与625 nm发光二极管(LED)激发,发射波长为760 nm。成像系统基于Timepix3相机(Tpx3Cam)和光机械适配器,后者还装有图像增强器。O2磷光寿命成像显微镜(PLIM)是各种研究的常用方法,但当前平台在准确性、一般灵活性和可用性方面存在局限性。

这里介绍的系统是一个快速且高灵敏度的成像器,它建立在集成的光学传感器和读出芯片模块Tpx3Cam上。它被证明可以从表面染色的肠组织样本或大肠腔内染色的碎片中产生高强度磷光信号和稳定的寿命值,并允许在大约 20 秒或更短的时间内详细映射组织 O2 水平。还介绍了无意识动物移植肿瘤缺氧成像的初步实验。我们还描述了如何重新配置成像仪以用于基于Pt-卟啉染料的O2敏感材料,使用390 nm LED进行激发,使用带通650 nm滤光片进行发射。总体而言,发现PLIM成像仪可以对所用探头的寿命值以及O2 浓度的相应二维图进行准确的定量测量。它还可用于离体组织模型和活 动物的代谢成像。

引言

O 2是生命系统的关键环境参数之一,了解O 2的分布及其动力学对于许多生物学研究非常重要1,23通过磷光探针45678和PLIM 9,1011,12,13评估组织氧合在生物和医学研究中越来越受欢迎3,9,14,1516 17,1819.这是因为与荧光或磷光强度测量不同,PLIM不受探针浓度、光漂白、激发强度、光学对准、散射和自发荧光等外部因素的影响。

然而,当前的O2 PLIM平台受到其灵敏度、图像采集速度、准确性和一般可用性的限制。时间相关单光子计数(TCSPC)与光栅扫描程序相结合,经常用于PLIM和荧光寿命成像显微镜(FLIM)设备202122。然而,由于PLIM需要较长的像素停留时间(在毫秒范围内),因此图像采集时间比FLIM应用所需的时间要长得多202223。其他技术,如门控CCD / CMOS相机,缺乏单光子灵敏度,帧速率低20,242526此外,现有的PLIM系统大多以微观形式使用,而宏观系统不太常见27

基于TCSPC的PLIM宏观成像仪28 的建立是为了克服其中的许多限制。使用新的光机械适配器Cricket极大地促进了成像仪的设计,该适配器具有以下特点:i)两个C接口适配器,可轻松耦合背面的相机模块和正面的物镜;ii) 用于图像增强器的内部外壳和板球外侧的后者的电源插座;iii) 正面 C 接口适配器后面的内部空间,可以在增强器前面安装标准的 25 mm 发射滤光片;iv)带有环形调节器的内置光准直光学元件,允许镜头和相机之间的光学对准/聚焦,以在相机芯片上产生清晰的图像。

在组装的成像仪中,相机模块耦合到Cricket适配器的背面,该适配器还包含一个图像增强器,该增强器由光电阴极组成,后跟微通道板(MCP),放大器和快速闪烁体P47荧光粉。板球内部装有760 nm±50 nm发射滤光片,物镜NMV-50M11'''安装在正面C接口适配器上。最后,镜头和相机与环形调节器光学对齐。

增强器的作用是检测入射光子并将其转换为相机芯片上的快速光爆发,这些光被记录并用于生成发射衰减和寿命图像。该相机模块包括基于TCSPC的先进光学传感器阵列(256像素x 256像素)和新一代读出芯片29,303132,33允许同时记录成像芯片每个像素的光子爆发的到达时间(TOA)和超过阈值的时间(TOT),时间分辨率为1.6 ns读出速率为80 Mpixel/s。

在这种配置中,带有增强器的相机具有单光子灵敏度。它是数据驱动的,并且基于快速像素检测器读出(SPIDR)系统34。成像仪的空间分辨率先前用平面磷光O2 传感器和分辨率板模板表征。仪器响应函数(IRF)是通过平面荧光传感器在与所有其他测量相同的设置下成像来测量的。染料的寿命约为2.6 ns,足以用于PLIM模式下的IRF测量。成像仪可以对尺寸最大为 18 mm x 18 mm 的物体进行成像,空间和时间分辨率分别为 39.4 μm 和 30.6 ns(半最大值时全宽),分别为28

以下协议描述了宏观成像仪的组装及其后续用途,用于绘制用先前表征的近红外O 2探针NanO2-IR35染色的生物样品中的O2浓度。该探针是一种基于铂(II)苯卟啉(PtBP)染料的明亮,可光,细胞渗透的O2传感探针。它在 625 nm 处可激发,在 760 nm 处发射,并在生理范围(0%-21% 或 0-210 μM 的 O 2)内对 O2 提供强大的光学响应。该成像仪还被证明可以表征基于Pt(II)-卟啉染料的不同传感器材料。总体而言,成像器紧凑而灵活,类似于普通的摄影相机。在当前设置中,成像仪适用于不同的宽场PLIM应用。用快速激光源代替LED将进一步提高成像仪的性能,并可能实现纳秒级FLIM应用。

研究方案

所有动物程序均根据欧洲共同体理事会指令(2010/63 / EU)在健康产品监管局(HPRA,爱尔兰)颁发的授权下进行,并得到科克大学动物实验伦理委员会的批准。

1. 样品制备

  1. 用活组织样品离 染色
    1. 对于 离体 应用,使用来自4周龄雌性Balb / c小鼠的新鲜分离的组织样品。
    2. 在实验当天,通过斩首对小鼠实施安乐死,并快速解剖结肠(大肠)的碎片,大小约为10毫米。立即用PBS缓冲液洗涤它们,置于补充有10mM Hepes缓冲液(pH 7.2)的DMEM培养基中,并在37°C下孵育36
    3. 对于肠浆膜侧的表面染色,将活组织样品转移到迷你培养皿中,应用含有 2 mL 含有 1 mg/mL NanO2-IR 探针的完整 DMEM 以覆盖组织样品,并在 37 °C 下孵育 30 分钟。
      注意:死后组织中的细胞在培养物中保持数小时的活性。NaNO2-IR显示出轻微的细胞毒性,因此所有实验在组织分离后4小时内完成。
    4. 对于深部组织腔内 离体 染色,将肠碎片转移到干燥的培养皿中,并用滤纸去除任何多余的DMEM。
    5. 用汉密尔顿注射器将 1 μL 含有 1 mg/mL NanO2-IR 35 的 DMEM 注入腔中,并将样品孵育15 分钟或长达 4 小时。
      注意:NaNO2-IR显示出轻微的长期细胞毒性作用;因此,所有实验应在组织分离后4小时内完成。
  2. 活体动物染色肿瘤组织的制备
    1. 对于 体内 应用,在含有 NaNO2-IR 探针的无血清培养基中以 0.05 mg/mL 的速度对 CT26 细胞进行预染色 18 小时。
    2. 取一只小鼠,剃除右胁的注射区域,并用注射器注射200μL的1×10 5未染色细胞和1×105细胞的混合物预染NanO 2-IR。
    3. 允许肿瘤在小鼠中生长,用卡尺定期监测肿瘤大小和动物体重37。移植肿瘤的动物在肿瘤生长的第七天准备好进行成像。
      注意:使用公式(1)计算肿瘤体积:
      V = (L × W 2)/21
      其中 L 是肿瘤的直径, W is是垂直于直径 L的直径。
    4. 在成像前通过颈椎脱位处死动物。

2. PLIM成像设置

  1. 拿起 Cricket 适配器,卸下其背面 C 接口适配器以进入内部的增强器外壳。将 MCP-125 图像增强器插入此隔间,然后将 C 接口适配器放回原处。
  2. 拆下 Cricket 的正面 C 接口适配器,插入 760 nm ± 50 nm 发射滤光片,然后放回 C 接口进行固定。
  3. 通过其 C 接口适配器 Tpx3Cam 摄像头模块连接到板球模块的背面
  4. 通过其 C 接口适配器 镜头连接到板球模块的正面。
  5. 将整个相机组件安装在光学黑匣子的顶部,朝下到样品成像的载物台(图1)。
  6. 将 624 nm 超亮 LED 安装在连接到黑匣子内面包板的立柱上。
  7. 将 LED 连接到电源和脉冲发生器。打开 LED 并聚焦,以确保成像样品的有效和均匀激发。
  8. 将摄像机连接到另一个脉冲发生器,并同步发送到摄像机的脉冲和LED38
  9. 使用Cricket单元上的特殊电缆和插座,将增强器连接到标准电源,并将 增益 设置为 2.7 V
  10. 使用镜头和Cricket适配器的对焦功能,将相机光学元件聚焦在样品台上,以生成具有良好对比度和亮度的样品的清晰图像。
  11. 对于与 Pt-卟啉染料一起使用的成像仪,请将 625 nm LED 替换为 390 nm LED 进行激发,并将 760 nm ± 50 nm 滤光片替换为 Cricket 模块中的 650 nm ± 50 nm 滤光片。

3. 图像采集

  1. 将样品放在相机镜头前面。
    注意:使用x-y-z可调载物台作为样品架,以调整样品位置以获得良好的聚焦。
  2. 关掉房间里的所有灯。
  3. 打开 Sophy 软件以调整操作参数,例如聚焦和样品对齐。
    注意:Sophy软件与相机一起提供,用于设置成像参数并记录数据。通过检查相机代码确保软件已连接到相机。但是,我们使用不同的程序进行数据采集。
  4. 模块中,选择 无限帧,并将 像素操作模式 设置为 时间超过阈值
  5. 在"模块"中,转到"预览",然后选择"活动模块"。这将打开 Medpix/Timpix 帧窗口。
  6. 在此窗口中,更改 色阶,并将图像 旋转 到所需的方向。
  7. 打开增强器,然后开始录制。
    注意:使用Sophy软件的记录屏幕直观地确认样品的对齐和焦点,并优化用于记录的LED激发参数。
  8. 停止录制,然后关闭 Sophy 软件。
  9. 转到 终端,并使用定制设计的软件获取二进制格式的原始数据并对其进行后处理(https://github.com/svihra/TimePix3)。
    1. 终端中,运行以下命令记录数据:
      CD 文档/SPIDR/trunk/release/
       ls
      ./Tpx3daq - i 1 - b 50 - m - s {文件名} - t {采集时间}
      注意:键入"ls"后,检查当前目录中的文件列表;确认可以看到 Tpx3daq。
    2. 等到所有帧都记录下来。
    3. 要处理数据,请在终端中运行以下命令 :
      cd 文档/数据处理/Timepix3/Timepix3/

      .l 数据处理.cpp++
      .x 德吉。C
    4. 等待 RRGui 窗口打开。选择左侧的所有变量,右侧选择" 所有数据"、" 单个文件"和 "质心 "。
    5. 选择要处理的文件并运行数据缩减器。
      注意:所有已处理的文件将显示在与原始文件相同的文件夹中。

4. 数据分析

  1. 使用用C语言编写的专用程序分析后处理的数据,该程序将数据写入.ics图像文件(https://github.com/lmhirvonen/timepix3cam)。
  2. 使用免费提供的时间分辨成像软件打开.ics图像文件(参见 材料表)。使用 双指数 函数来拟合磷光衰减。
  3. 使用可用的图像分析软件打开拟合的图像.ics文件(参见 材料表)。
  4. 使用 查找表生成磷光寿命图像,并以伪色标对其进行编码(例如,蓝色表示短寿命,红色表示长寿命)。使用 测量 函数计算整个图像或特定感兴趣区域 (ROI) 的平均生命周期值。
  5. 通过使用从探头36的O2校准拟合获得的方程将寿命值转换为氧气浓度。
    注:本工作使用了等式(2):
    O 2 [μM] = −86.16 + 770.35 × e−0.049 × LT2

结果

对于 离体 成像应用,通过在组织的浆膜侧局部应用NanO2-IR探针对肠组织碎片进行染色。为了进行更深的染色,将 1 μL 探针注入管腔中。在后一种情况下,0.2-0.25毫米厚的肠壁将探头与相机隔绝开来。两种染色过程如图 2A所示。

得到的强度和PLIM图像如图2B-G所示。颜色清楚地反映了寿命值的差异,因?...

讨论

上述协议详细描述了新成像仪的组装及其在微秒级FLIM/PLIM模式下的操作。基于TCSPC的新一代Tpx3Cam相机,通过光机械适配器Cricket与图像增强器,发射滤光片和微距镜头相结合,产生了稳定,紧凑和灵活的光学模块,易于操作。该成像仪在一系列不同的样品和分析任务中表现良好,其中包括磷光材料和活组织O2 成像的表征。成像实验采用近红外Pt(II)-苯并卟啉基细胞渗透可溶性探针NanO2-IR和...

披露声明

作者没有利益冲突需要声明。

致谢

爱尔兰科学基金会对这项工作的财政支持,SFI/12 / RC / 2276_P2,SFI / 17 / RC-PhD / 3484和18 / SP / 3522,突破性癌症研究(爱尔兰精准肿瘤学)表示感谢。

材料

NameCompanyCatalog NumberComments
627 nm LEDParts ExpressCan be replaced with different LED based on the excitation wavelength of the sensor. Used 390 nm LED for Pt-porphyrin dyes.
760 ± 50 nm emission filterEdmund Optics84-788Can be replaced with different filter based on the emission wavelength of the sensor. Used 650 ± 50 nm bandpass filter for Pt-porphyrin dyes.
Balb/c miceEnvigo, UKBalb/c
Black boxThorlabsXE25C9/M
Cricket AdapterPhotonisCricket-2
CT26 cells ATCCCT26.WThttps://www.atcc.org/products/crl-2638
DMEMSigma-AldrichD0697Other media can also be used
ImageJ SoftwareImageJFree Image analysis software. Can be downloaded from: https://imagej.nih.gov/ij/index.html
MCP-125 image intensifier with P47 phosphor screenPhotonisPP0360EF
Mini dishesSarstedt83.3900.30035 mm diameter 
Mylar plastic film, 75 micron RS Ireland785-0795Othe plastic substrates can also be used
NanO2-IRhome-maden/aThe probe can be synthesised according to the published method 'Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS, Papkovsky DB. In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods. 2013 Jun 15;216(2):146-51. doi: 10.1016/j.jneumeth.2013.04.005. Epub 2013 Apr 25. PMID: 23624034; PMCID: PMC3719178.' or provided by our lab. 
NMV-50M11” 50 mm lensNavitarOther lenses compatibel with C-mount adators can be used
Optical breadboardThorlabsMB1836
Petri DishesSarstedt82.1472.00192 mm diameter
Power SupplyTenma72-10495
Pulse GeneratorTenmaTGP110
SophyAmsterdam Scientific Instrumentsn/zProvided by ASI together with the Tpx3Cam
Tpx3CamAmsterdam Scientific InstrumentsTPXCAM
Tri2 SoftwareUniversity of Oxfordn/aFree Time Resolved Imaging software, can be downloaded from: https://users.ox.ac.uk/~atdgroup/index.shtml
XYZ Translation StageThorlabsLT3

参考文献

  1. Papkovsky, D. B., Dmitriev, R. I. Imaging of oxygen and hypoxia in cell and tissue samples. Cellular and Molecular Life Sciences. 75 (16), 2963-2980 (2018).
  2. Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C., Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. Journal of Cellular and Molecular Medicine. 15 (6), 1239-1253 (2011).
  3. Yoshihara, T., Hirakawa, Y., Hosaka, M., Nangaku, M., Tobita, S. Oxygen imaging of living cells and tissues using luminescent molecular probes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 30, 71-95 (2017).
  4. Papkovsky, B. Phosphorescence based oxygen sensors essential tools for cell biology and life science research. 17th International Meeting on Chemical Sensors - IMCS. , 71-72 (2018).
  5. Tsytsarev, V., et al. In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. Journal of Neuroscience Methods. 216 (2), 146-151 (2013).
  6. O'Donovan, C., Hynes, J., Yashunski, D., Papkovsky, D. B. Phosphorescent oxygen-sensitive materials for biological applications. Journal of Materials Chemistry. 15, 2946-2951 (2005).
  7. Dmitriev, R. I., Papkovsky, D. B. Optical probes and techniques for O 2 measurement in live cells and tissue. Cellular and Molecular Life Sciences. 69 (12), 2025-2039 (2012).
  8. Papkovsky, D. B., Zhdanov, A. V. Phosphorescence based oxygen sensors and probes for biomedical research. Advanced Environmental, Chemical, and Biological Sensing Technologies XIV. 10215, 102150 (2017).
  9. Rumsey, W. L., Vanderkooi, J. M., Wilson, D. F. Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue. Science. 241 (4873), 1649-1651 (1988).
  10. Hogan, M. C. Phosphorescence quenching method for measurement of intracellular PO 2 in isolated skeletal muscle fibers. Journal of Applied Physiology. 86 (2), 720-724 (1999).
  11. Apreleva, S. V., Wilson, D. F., Vinogradov, S. A. Tomographic imaging of oxygen by phosphorescence lifetime. Applied Optics. 45 (33), 8547-8559 (2006).
  12. Becker, W., Shcheslavskiy, V., Rück, A. Simultaneous phosphorescence and fluorescence lifetime imaging by multi-dimensional TCSPC and multi-pulse excitation. Advances in Experimental Medicine and Biology. 1035, 19-30 (2017).
  13. Wolfbeis, O. S. Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode. BioEssays. 37 (8), 921-928 (2015).
  14. Dmitriev, R. I., Zhdanov, A. V., Nolan, Y. M., Papkovsky, D. B. Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials. 34 (37), 9307-9317 (2013).
  15. Shcheslavskiy, V. I., Neubauer, A., Bukowiecki, R., Dinter, F., Becker, W. Combined fluorescence and phosphorescence lifetime imaging. Applied Physics Letters. 108, 091111 (2016).
  16. Babilas, P., et al. In vivo phosphorescence imaging of pO2 using planar oxygen sensors. Microcirculation. 12 (6), 477-487 (2005).
  17. Babilas, P., et al. Transcutaneous pO2 imaging during tourniquet-induced forearm ischemia using planar optical oxygen sensors. Skin Research and Technology. 14 (3), 304-311 (2008).
  18. Golub, A. S., Pittman, R. N. PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. American Journal of Physiology-Heart and Circulatory Physiology. 294 (6), 2905-2916 (2008).
  19. Zhdanov, A. V., Golubeva, A. V., Okkelman, I. A., Cryan, J. F., Papkovsky, D. B. Imaging of oxygen gradients in giant umbrella cells: An ex vivo PLIM study. American Journal of Physiology - Cell Physiology. 309 (7), 501-509 (2015).
  20. Becker, W. Fluorescence lifetime imaging - Techniques and applications. Journal of Microscopy. 247 (2), 119-136 (2012).
  21. Jenkins, J., Dmitriev, R. I., Papkovsky, D. B., Becker, W. Imaging cell and tissue O 2 by TCSPC-PLIM. Advanced Time-Correlated Single Photon Counting Applications. , 225-247 (2015).
  22. Becker, W., König, K. Advanced TCSPC-FLIM techniques. Multiphoton Microscopy and Fluorescence Lifetime Imaging: Applications in Biology and Medicine. , 23-52 (2018).
  23. Wei, L., Yan, W., Ho, D. Recent advances in fluorescence lifetime analytical microsystems: Contact optics and CMOS time-resolved electronics. Sensors. 17 (12), 2800 (2017).
  24. Hirvonen, L. M., Suhling, K. Wide-field TCSPC: Methods and applications. Measurement Science and Technology. 28, 012003 (2017).
  25. Hirvonen, L. M., Festy, F., Suhling, K. Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution. Optics Letters. 39 (19), 5602 (2014).
  26. Sparks, H., et al. Characterisation of new gated optical image intensifiers for fluorescence lifetime imaging. Review of Scientific Instruments. 88 (1), 013707 (2017).
  27. Chelushkin, P. S., Tunik, S. P. . Progress in Photon Science: Emerging New Directions. 115, (2017).
  28. Sen, R., et al. A new macro-imager based on Tpx3Cam optical camera for PLIM applications. Proceedings of SPIE. , 113591 (2020).
  29. Fisher-Levine, M., Nomerotski, A. TimepixCam: A fast optical imager with time-stamping. Journal of Instrumentation. 11, (2016).
  30. Nomerotski, A. Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 937. 937, 26-30 (2019).
  31. Poikela, T., et al. Timepix3: A 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of Instrumentation. 9, 05013 (2014).
  32. Nomerotski, A., et al. Characterization of TimepixCam, a fast imager for the time-stamping of optical photons. Journal of Instrumentation. 12, 01017 (2017).
  33. Hirvonen, L. M., Fisher-Levine, M., Suhling, K., Nomerotski, A. Photon counting phosphorescence lifetime imaging with TimepixCam. Review of Scientific Instruments. 88, 013104 (2017).
  34. Visser, J., et al. SPIDR: A read-out system for Medipix3 & Timepix3. Journal of Instrumentation. 10, 12028 (2015).
  35. Tsytsarev, V., et al. In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. Journal of Neuroscience Methods. 216 (2), 146-151 (2013).
  36. Sen, R., et al. Mapping O2 concentration in ex-vivo tissue samples on a fast PLIM macro-imager. Scientific Reports. 10, 19006 (2020).
  37. Kersemans, V., Cornelissen, B., Allen, P. D., Beech, J. S., Smart, S. C. Subcutaneous tumor volume measurement in the awake, manually restrained mouse using MRI. Journal of Magnetic Resonance Imaging. 37 (6), 1499-1504 (2013).
  38. Sen, R., et al. New luminescence lifetime macro-imager based on a Tpx3Cam optical camera. Biomedical Optics Express. 11 (1), 77-88 (2020).
  39. Papkovsky, D. B., et al. Phosphorescent polymer films for optical oxygen sensors. Biosensors and Bioelectronics. 7 (3), 199-206 (1992).
  40. Sen, R., et al. Characterization of planar phosphorescence based oxygen sensors on a TCSPC-PLIM macro-imager. Sensors and Actuators, B: Chemical. 321, 128459 (2020).
  41. Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., Berndt, K. W., Johnson, M. Fluorescence lifetime imaging. Analytical Biochemistry. 202 (2), 316-330 (1992).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

194

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。