JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本研究提出了一系列从工厂制备DESI-MSI样品的方法,并详细描述了DESI组件安装、MSI数据采集和处理的过程。该协议可以应用于获取植物空间代谢组信息的几种条件。

摘要

中药的药用主要是由于其次生代谢产物。这些代谢物分布的可视化已成为植物科学中的一个关键课题。质谱成像可以提取大量数据,并通过分析组织切片来提供有关这些数据的空间分布信息。解吸电喷雾电离质谱成像(DESI-MSI)具有高通量和高精度的优点,常用于生物学研究和中药研究。然而,本研究中使用的程序很复杂,负担不起。在这项研究中,我们优化了切片和DESI成像程序,并开发了一种更具成本效益的方法来鉴定代谢物的分布,并在植物组织中对这些化合物进行分类,特别关注中药。本研究将促进DESI在中药/民族医学代谢物分析中的应用和研究相关技术的标准化。

引言

代谢物分布的可视化已成为植物科学中的一个关键课题,特别是在传统中医中,因为它揭示了植物内特定代谢物的形成过程。参考传统中药(TCM),它提供有关活性成分的信息,并指导植物部分在制药应用中的应用。通常,代谢物的可视化是通过原位杂交、荧光显微镜或免疫组织化学来实现的,但是这些实验检测到的化合物数量传达的化学信息有限。结合组织染色,质谱成像(MSI)可以通过扫描和分析微米1的组织切片,提供大量的数据并提供化合物的空间分布信息。MSI使用分析物从样品表面解吸和电离,然后对产生的气相离子进行质量分析,并应用成像软件来整合信息并绘制记录特定离子丰度的二维图像。该技术可以通过检测靶组织和器官中药物及其诱导代谢物的特征分布来确定外源性和内源性分子2345

近几十年来,已经开发了各种成像MS模式;其中最突出的是解吸电喷雾电离基MSI (DESI-MSI)、基质辅助激光解吸/电离(MALDI)和二次离子质谱(SIMS)6。DESI-MSI由于其常压操作,高通量和更高的精度而通常用于生物学研究7。MALDI已被应用于鉴定转甲状腺素蛋白片段作为庆大霉素的潜在肾毒性生物标志物,并分析在小鼠大脑中管理1-甲基-4-苯基-1,2,3,6-四氢吡啶后神经毒性代谢物1-甲基-4-苯基吡啶的分布89。MALDI和DESI已被用于确定药物诱导的小鼠肾脏中晶体状结构的组成;这些结构主要由由于药物的去甲基化和/或氧化而形成的代谢物组成10。此外,MSI已被应用于靶器官中药物毒性代谢分布的定位。然而,植物组织中的细胞各不相同,与动物不同,需要特殊的切片程序。

在植物中,通过使用MALDI成像,到目前为止,已经分析了小麦(小麦)茎,大豆(甘氨酸max),水稻(稻(稻)种子,拟南花和根以及大麦(Hordeum vulgare)种子中不同化合物的分布11,12,131415,161718.最近的研究报告,DESI-MSI正在天然药物和产品的代谢物分析中出现,特别是在银杏叶,夫子和青蒿L192021等中药中。在这些研究中,制备植物材料样品的方案不同,有些需要更复杂的设备,如冷冻切片机。DESI-MSI对检测样品的表面平整度有严格的要求。在分析动物的器官或组织时,通常通过冷冻切片22制成样品。然而,冷冻切片的程序复杂且昂贵,并且常用的粘合剂最佳切割温度(OCT)方法在成像时具有很强的信号。此外,中医的药用组织各不相同;例如,丹参的根,在中文中被称为丹参,用于药用,而在紫苏(紫苏)中,叶子被使用2324。因此,有必要改进样品制备程序,以促进DESI在中药代谢物分析中的应用。

作为一种多年生草本植物和常用中药, 绣线菊 最初被记录在最古老的医学专著《神农本草经》(中文称为神农本草经)中。在这项研究中,我们优化了切片和DESI成像程序,并开发了一种更具成本效益的方法来鉴定S . miltiorrhiza组织中的分布和分类。这种方法还可以克服与干燥组织相关的缺点 - 它们通常在氮气吹下容易断裂 - 并促进中医的发展。本研究将促进中医/民族医学在研究相关技术方面的标准化。

研究方案

1. 样品制备

  1. 从2年生的 丹参 植物(图1A)收集干净的根和叶,并用手直接以约3-5毫米的横截面厚度切片。然后,使用双面胶带将样品粘附在粘附显微镜载玻片上(图1B)。
    注意:确保双面胶带的尺寸大于样品。如果组织干燥,请在切片前将其浸泡在水或4%多聚甲醛中过夜。
  2. 将另一个显微镜载玻片放在样品上方,并用像三明治一样的密封膜包裹两个载玻片(图1C)。将夹心样品在-80°C下冷冻至少4小时,然后用以下设置参数将其置于空气真空下2小时(图1D):疏水阀温度为-75至-82°C,真空计为2.5至3.7Pa。
    注意:包裹密封膜时,请确保两个载玻片平行,以保持样品表面完整。如果植物组织水分含量高,请将空气真空时间延长至3小时。不要超过5小时,否则组织很容易断裂。
  3. 将夹心样品储存在-80°C直至分析。在干燥器中将样品置于室温,以避免样品表面冷凝。然后,将样品置于基质应用中。

2. 安装解吸电喷雾电离(DESI)装置

  1. 在ESI模式下实现仪器的检测器设置和质量校准;在水-乙腈 (1:1 v/v) 溶液中使用亮氨酸脑啡肽 (LE) 进行检测器设置,并在水异丙醇 (1:1 v/v) 溶液中使用甲酸钠 (NaFA) 进行质量校准。
  2. 取出ESI源并将DESI单元安装到质谱仪上。将N2 气体供应连接到DESI装置,并将气体压力调节到0.5 MPa左右(图2A)。交换源时无需排气仪器。
  3. 在水-甲醇(1:9 v / v)溶液中用LE和甲酸填充5 mL注射器,并将注射器连接到高性能注射泵,为样品中化学物质的电离提供溶剂(图2B)。
  4. 将提供毛细管的溶剂连接到注射器和DESI喷雾器(图2C)。提供毛细管的溶剂是标准的75 μm内径和375 μm外径毛细管;它相当狭窄,容易被杂质堵塞,因此扫描过程中使用的溶剂应该是MS级的,并在使用前过滤,以降低堵塞的风险。
  5. 启动注射泵并将输注速率设置为 2 μL/min,以获得恒定的流量和溶剂喷雾(图 2B)。关闭N2 气阀,然后在大约15秒后将其打开;一小滴溶剂将被吹到载物台上,如果溶剂流动处于恒定状态,则可以看到喷雾。
  6. 根据喷雾角度、XYZ 轴、突起和高度调整喷雾器的位置(图 2D)。使用红色和黑色标记作为参考来优化质谱信号,在灵敏度模式下获得高于 1 x 105 的 信号强度(图 2E)。
    1. 喷雾器的突出是影响信号强度的最重要因素;通过使用 2 mm 扳手更换 N5 气体护罩来调整突起。喷雾方向影响质量图像的质量;旋转喷雾器,直到喷雾笔直。一旦突出部分调整到最佳信号强度位置,在交换信号源时尽量不要改变它。
  7. 完成上述所有步骤后,设置已准备好进行实验,并且在初始设置后观察到,设置通常稳定>3周的可用性。

3. 德西-质谱图像采集

  1. 对于 DESI-MSI,不进行样品预处理。对于已经进行预处理的样品,请尽可能减少预处理步骤。例如,有些样品只能使用封片剂制作,因此请尽可能去除载玻片上多余的培养基。
  2. 在载玻片上拍摄样品的图像(图3A)。请勿触摸样品表面,以免吸入任何杂质。
  3. 将载玻片放在DESI载物台上的板位置上。舞台有两个板位置,A 和 B;记住正确的位置很重要。使用标准载玻片 (75 mm x 25 mm) 或全载玻片,否则载玻片将无法安装在该位置且无法稳定握持。一个完整的载玻片(120 mm x 80mm)最多可容纳四个载玻片,因此实验面积要大得多。
  4. 打开高清海量图像处理软件,在采集选项卡中设置新印版,选择正确的印版位置(A或B)和印版类型。在图像选择页面上,选择幻灯片的四个角,然后将图像自动调整到正确的方向(图 3A)。
  5. 设置 MS 参数;常用的实验类型是DESI-MS模式,在该模式下,仅检测母离子。该仪器在一个实验中只能使用一个极性;因此,选择极性为正极或负极。要获得有关少量化学品的更多信息,请应用灵敏度模式(图3B)。
  6. 绘制一个矩形以在"图案"选项卡中定义扫描区域并设置像素大小。通常,对于 DESI-MS 模式,请保持像素的 X 和 Y 大小相等。将扫描速率设置为不超过像素大小的5倍(图3C)。
  7. 保存项目并导出质谱采集软件的工作表。
  8. 打开质谱采集软件,导入工作表,并将其另存为新的样品列表。按开始 运行以开始 MSI 扫描。可以通过导入更多工作表将多个图像添加到实验队列中。

4. 处理 DESI-MSI 数据和可视化

  1. 将样品的数据文件加载到大量图像处理软件中,并设置DESI图像处理的参数(图3D)。由于亮氨酸脑啡肽用于内部锁定质量,并且锁定质量是识别实验极性的唯一点,因此设置正确的锁定质量非常重要。设置以下值:对于正模式:556.2772;对于负模式:554.2620。
  2. 可以建立目标化学品清单,在这种情况下,处理结果将集中在目标清单中的化学品上。加载处理后的数据文件以可视化样品的DESI图像。单击"归一化"按钮通过总离子色谱(TIC)对数据进行归一化,以获得特定化学物质与参考的相对强度,然后可以将不同的样品相互比较(图3E)。
  3. 绘制感兴趣区域(ROI)并在样本图像上复制多个副本;可以在不同的图像上进行投资回报。选择所有 ROI 并导出多变量分析 (MVA) 以从 MVA 的所有 ROI 中提取 MS 信息(图 3F)。

结果

该协议可以导致植物样品中化合物的鉴定和分布。在特定m/z的MS图像中,每个像素的颜色代表m/z的相对强度,因此可以与整个样品中代谢物离子的自然分布和丰度相关联。收集位置的化学物质丰度越高,颜色越亮。图片中的条形图(4A-D)显示了颜色的渐变。在这里,我们选择了两种对S. miltiorrhiza的药用有价值的化合物。如图4A-D所示,目标?...

讨论

MS技术的出现开启了近年来分子水平天然产物研究的新见解24。该质谱仪具有高灵敏度和高通量,即使在痕量浓度为25的情况下,也能对天然产物中的代谢物进行靶向和非靶向分析。因此,MS目前广泛应用于中药(TCM)化学领域。对中药化学成分进行定性和定量研究,可以提供中药成分及其相关化合物的信息,不仅为药理学研究提供了适宜的参考,而且为构建中?...

披露声明

作者没有什么可透露的。

致谢

这项工作得到了四川省自然科学基金(编号:2022NSFSC0171)和成都中医药大学杏林人才计划(第030058042号)的支持。

材料

NameCompanyCatalog NumberComments
2-PropanolFisherCAS:67-63-0HPLC grade
AcetonitrileSigma-aldrichNumber-75-05-8LC-MS grade
Adhesion Microscope slidesCitotest scientific80312-3161Microscope glass slides  can adhere to  the sample 
Air cooled dry vacuum pumpEYELAFDU-2110Air-vaccum equipment at -80°C
Formic AcidACSF1089 | 64-18-6LC-MS grade
LE (Leucine Enkephalin)Waters186006013-1LC-MS grade
MethanolSigma-aldrichNumber-67-56-1LC-MS grade
Parafilm Bemis Companysc-200288Laboratory Sealing Film
ParaformaldehydeSigma-aldrichV900894Reagent grade
Q-Tof Mass Spectrometer with DESI sourceWatersSynapt XS

参考文献

  1. Buchberger, A. R., DeLaney, K., Johnson, J., Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Analytical Chemistry. 90 (1), 240-265 (2018).
  2. Karlsson, O., Hanrieder, J. Imaging mass spectrometry in drug development and toxicology. Archives of Toxicology. 91 (6), 2283-2294 (2016).
  3. Qiu, Z. -. D., et al. Real-time toxicity prediction of Aconitum stewing system using extractive electrospray ionization mass spectrometry. Acta Pharmaceutica Sinica B. 10 (5), 903-912 (2020).
  4. Wang, Z., et al. In situ metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging. Acta Pharmaceutica Sinica B. 10 (6), 1083-1093 (2020).
  5. Jiang, H., Gao, S., Hu, G., He, J., Jin, H. Innovation in drug toxicology: Application of mass spectrometry imaging technology. Toxicology. 464, 153000 (2021).
  6. Unsihuay, D., Mesa Sanchez, D., Laskin, J. Quantitative mass spectrometry imaging of biological systems. Annual Review of Physical Chemistry. 72, 307-329 (2021).
  7. Parrot, D., Papazian, S., Foil, D., Tasdemir, D. Imaging the unimaginable: desorption electrospray ionization-imaging mass spectrometry (DESI-IMS) in natural product research. Planta Medica. 84 (9-10), 584-593 (2018).
  8. Meistermann, H., et al. Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Molecular & Cellular Proteomics. 5 (10), 1876-1886 (2006).
  9. Kadar, H., et al. MALDI mass spectrometry imaging of 1-methyl-4-phenylpyridinium (MPP+) in mouse brain. Neurotoxicity Research. 25 (1), 135-145 (2014).
  10. Bruinen, A. L., et al. Mass spectrometry imaging of drug related crystal-like structures in formalin-fixed frozen and paraffin-embedded rabbit kidney tissue sections. Journal of the American Society for Mass Spectrometry. 27 (1), 117-123 (2016).
  11. Mullen, A. K., Clench, M. R., Crosland, S., Sharples, K. R. Determination of agrochemical compounds in soya plants by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Communication in Mass Spectrometry. 19 (18), 2507-2516 (2005).
  12. Robinson, S., Warburton, K., Seymour, M., Clench, M., Thomas-Oates, J. Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption ionization mass spectrometry. New Phytologist. 173 (2), 438-444 (2007).
  13. Yoshimura, Y., Zaima, N., Moriyama, T., Kawamura, Y. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS One. 7 (2), 31285 (2012).
  14. Jun, J. H., et al. High-spatial and high-mass resolution imaging of surface metabolites of Arabidopsis thaliana by laser desorption-ionization mass spectrometry using colloidal silver. Analytical Chemistry. 82 (8), 3255-3265 (2010).
  15. Shroff, R., Vergara, F., Muck, A., Svatos, A., Gershenzon, J. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proceeding of the National Academy of Sciences. 105 (16), 6196-6201 (2008).
  16. Vrkoslav, V., Muck, A., Cvacka, J., Svatos, A. MALDI imaging of neutral cuticular lipids in insects and plants. Journal of the American Society for Mass Spectrometry. 21 (2), 220-231 (2010).
  17. Sarsby, J., Towers, M. W., Stain, C., Cramer, R., Koroleva, O. A. Mass spectrometry imaging of glucosinolates in Arabidopsis flowers and siliques. Phytochemistry. 77, 110-118 (2012).
  18. Peukert, M., et al. Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI). New Phytologist. 193 (3), 806-815 (2012).
  19. Li, B., et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant, Cell & Environment. 41 (11), 2693-2703 (2018).
  20. Liu, Y., et al. Unveiling dynamic changes of chemical constituents in raw and processed Fuzi with different steaming time points using desorption electrospray ionization mass spectrometry imaging combined with metabolomics. Frontiers in Pharmacology. 13, 842890 (2022).
  21. Liao, B., et al. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant. 15 (8), 1310-1328 (2022).
  22. Jones, E. E., Gao, P., Smith, C. D., Norris, J. S., Drake, R. R. Tissue biomarkers of drug efficacy: case studies using a MALDI-MSI workflow. Bioanalysis. 7 (20), 2611-2619 (2015).
  23. Jia, Q., et al. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine. 58, 152871 (2019).
  24. Zhang, Y., et al. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nature Communication. 12 (1), 5508 (2021).
  25. Tong, Q., et al. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta. 238 (2), 123045 (2022).
  26. Jarmusch, A. K., Cooks, R. G. Emerging capabilities of mass spectrometry for natural products. Natural Product Reports. 31 (6), 730-738 (2014).
  27. Aksenov, A. A., da Silva, R., Knight, R., Lopes, N. P., Dorrestein, P. C. Global chemical analysis of biology by mass spectrometry. Nature Reviews Chemistry. 1 (7), 1-20 (2017).
  28. Feng, H., Pan, G. X. Application of High Resolution Mass Spectrum in the analysis of the chemical constituents in traditional Chinese drug. Journal of Liaoning University of TCM. 14 (8), 40-42 (2012).
  29. Ho, Y. N., Shu, L. J., Yang, Y. L. Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. Wiley Interdisciplinary Reviews-Systems Biology and Medicine. 9 (5), (2017).
  30. Hemalatha, R. G., Pradeep, T. Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI-MS) imaging. Journal of Agricultural and Food chemistry. 61 (31), 7477-7487 (2013).
  31. Petras, D., Jarmusch, A. K., Dorrestein, P. C. From single cells to our planet-recent advances in using mass spectrometry for spatially resolved metabolomics. Current Opinion in Chemical Biology. 36, 24-31 (2017).
  32. Takats, Z. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 306 (5695), 471-473 (2004).
  33. Castaing, R., Slodzian, G. Microanalyse par émission secondaire. Journal of Microscopy. 1, 395-410 (1962).
  34. Caprioli, R. M., Farmer, T. B., Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical Chemistry. 69 (23), 4751-4760 (1997).
  35. Nemes, P., Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Analytical Chemistry. 79 (21), 8098-8106 (2007).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

JoVE 190

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。