A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol guides bioinformatics beginners through an introductory CUT&RUN analysis pipeline that enables users to complete an initial analysis and validation of CUT&RUN sequencing data. Completing the analysis steps described here, combined with downstream peak annotation, will allow users to draw mechanistic insights into chromatin regulation.
The CUT&RUN technique facilitates detection of protein-DNA interactions across the genome. Typical applications of CUT&RUN include profiling changes in histone tail modifications or mapping transcription factor chromatin occupancy. Widespread adoption of CUT&RUN is driven, in part, by technical advantages over conventional ChIP-seq that include lower cell input requirements, lower sequencing depth requirements, and increased sensitivity with reduced background signal due to a lack of cross-linking agents that otherwise mask antibody epitopes. Widespread adoption of CUT&RUN has also been achieved through the generous sharing of reagents by the Henikoff lab and the development of commercial kits to accelerate adoption for beginners. As technical adoption of CUT&RUN increases, CUT&RUN sequencing analysis and validation become critical bottlenecks that must be surmounted to enable complete adoption by predominantly wet lab teams. CUT&RUN analysis typically begins with quality control checks on raw sequencing reads to assess sequencing depth, read quality, and potential biases. Reads are then aligned to a reference genome sequence assembly, and several bioinformatics tools are subsequently employed to annotate genomic regions of protein enrichment, confirm data interpretability, and draw biological conclusions. Although multiple in silico analysis pipelines have been developed to support CUT&RUN data analysis, their complex multi-module structure and usage of multiple programming languages render the platforms difficult for bioinformatics beginners who may lack familiarity with multiple programming languages but wish to understand the CUT&RUN analysis procedure and customize their analysis pipelines. Here, we provide a single-language step-by-step CUT&RUN analysis pipeline protocol designed for users with any level of bioinformatics experience. This protocol includes completing critical quality checks to validate that the sequencing data is suitable for biological interpretation. We expect that following the introductory protocol provided in this article combined with downstream peak annotation will allow users to draw biological insights from their own CUT&RUN datasets.
The ability to measure interactions between proteins and genomic DNA is fundamental to understanding the biology of chromatin regulation. Effective assays that measure chromatin occupancy for a given protein provide at least two key pieces of information: i) genomic localization and ii) protein abundance at a given genomic region. Tracking the recruitment and localization changes of a protein of interest in chromatin can reveal direct target loci of the protein and reveal mechanistic roles of that protein in chromatin-based biological processes such as regulation of transcription, DNA repair, or DNA replication. The techniques available today to profile protein-DNA in....
NOTE: Information for CUT&RUN fastq files in GSE126612 are available in Table 1. Information related to the software applications used in this study are listed in the Table of Materials.
1. Downloading Easy-Shells_CUTnRUN pipeline from its Github page
Quality and adapter trimming retains reads with high sequencing quality
High-throughput sequencing techniques are prone to generating sequencing errors such as sequence 'mutations' in reads. Furthermore, sequencing adapter dimers can be enriched in sequencing datasets due to poor adapter removal during library preparation. Excessive sequencing errors, such as read mutations, generation of reads shorter than required for proper mapping, and enrichment of adapter dimers, can increase read map.......
The ability to map protein occupancy on chromatin is fundamental to conducting mechanistic studies in the field of chromatin biology. As laboratories adopt new wet lab techniques to profile chromatin, the ability to analyze sequencing data from those wet lab experiments becomes a common bottleneck for wet lab scientists. Therefore, we describe an introductory step-by-step protocol to enable bioinformatics beginners to overcome the analysis bottleneck, and initiate analysis and quality control checks of their own CUT&.......
All illustrated figures were created with BioRender.com. CAI acknowledges support provided through an Ovarian Cancer Research Alliance Early Career Investigator Award, a Forbeck Foundation Accelerator Grant, and the Minnestoa Ovarian Cancer Alliance National Early Detection Research Award.
....Name | Company | Catalog Number | Comments |
bedGraphToBigWig | ENCODE | https://hgdownload.soe.ucsc.edu/admin/exe/ | Software to compress and convert readcounts bedGraph to bigWig |
bedtools-2.31.1 | The Quinlan Lab @ the U. of Utah | https://bedtools.readthedocs.io/en/latest/index.html | Software to process bam/bed/bedGraph files |
bowtie2 2.5.4 | Johns Hopkins University | https://bowtie-bio.sourceforge.net/bowtie2/index.shtml | Software to build bowtie index and perform alignment |
CollectInsertSizeMetrics (Picard) | Broad institute | https://github.com/broadinstitute/picard | Software to perform insert size distribution analysis |
Cutadapt | NBIS | https://cutadapt.readthedocs.io/en/stable/index.html | Software to perform adapter trimming |
Deeptoolsv3.5.1 | Max Planck Institute | https://deeptools.readthedocs.io/en/develop/index.html | Software to perform Pearson coefficient correlation analysis, Principal component analysis, and Heatmap/average plot analysis |
FastQC Version 0.12.0 | Babraham Bioinformatics | https://github.com/s-andrews/FastQC | Software to check quality of fastq file |
Intervenev0.6.1 | Computational Biology & Gene regulation - Mathelier group | https://intervene.readthedocs.io/en/latest/index.html | Software to perform venn diagram analysis using peak files |
MACSv2.2.9.1 | Chan Zuckerberg initiative | https://github.com/macs3-project/MACS/tree/macs_v2 | Software to call peaks |
MACSv3.0.2 | Chan Zuckerberg initiative | https://github.com/macs3-project/MACS/tree/master | Software to call peaks |
Samtools-1.21 | Wellcome Sanger Institute | https://github.com/samtools/samtools | Software to process sam/bam files |
SEACRv1.3 | Howard Hughes Medial institute | https://github.com/FredHutch/SEACR | Software to call peaks |
SRA Toolkit Release 3.1.1 | NCBI | https://github.com/ncbi/sra-tools | Software to download SRR from GEO |
Trim_Galore v0.6.10 | Babraham Bioinformatics | https://github.com/FelixKrueger/TrimGalore | Software to perform quality and atapter trimming |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved