The in ovo chorioallantoic membrane (CAM) is grafted with fresh sarcoma-derived tumor tissues, their single cell suspensions, and permanent and transient fluorescently labeled established sarcoma cell lines. The model is used to study graft- (viability, Ki67 proliferation index, necrosis, infiltration) and host (fibroblast infiltration, vascular ingrowth) behavior.
Here we present an adapted protocol that can be used to generate a large number of murine invariant natural killer T cells from mouse spleen. The protocol outlines an approach by which splenic iNKT cells can be enriched for, isolated and expanded in vitro using a limited number of animals and reagents.
Proteins often contain multiple domains that can exert different cellular functions. Gene knock-outs (KO) do not consider this functional diversity. Here, we report a recombination-mediated cassette exchange (RMCE)-based structure-function approach in KO embryonic stem cells that allows for the molecular dissection of various functional domains or variants of a protein.
In the past, small animal irradiation was usually performed without the ability to target a well-delineated tumor volume. The goal was to mimic the treatment of human glioblastoma in rats. Using a small animal irradiation platform, we performed MRI-guided 3D conformal irradiation with PET-based sub-volume boosting in a preclinical setting.
Here, we present an elaborate and efficient protocol to treat isolated short bulbar or posterior urethral strictures with vessel-sparing excision and primary anastomosis.
Here we present a protocol to perform preclinical positron emission tomography-based radiotherapy in a rat glioblastoma model using algorithms developed in-house to optimize the accuracy and efficiency.
This protocol presents the slide preparation and automated scoring of the γ-H2AX foci assay on peripheral blood lymphocytes. To illustrate the method and sensitivity of the assay, isolated lymphocytes were irradiated in vitro. This automated method of DNA DSB detection is useful for fast and high-throughput biological dosimetry applications.
Robot-assisted Retzius-sparing radical prostatectomy is a technique that enables to preserve urinary continence or facilitates recovery of urinary continence in the majority of patients. Patients must be informed about the risk of a positive surgical margin.
This protocol describes establishing three-dimensional (3D) tissue organoids from primary human ovarian surface epithelium (hOSE) cells. The protocol includes isolation of hOSE from freshly collected ovaries, cellular expansion of the hOSE, cryopreservation-thawing procedures, and organoid derivation. Immunofluorescence, quantitative analysis, and showcasing utility as a screening platform are included.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten