In this video, we show a procedure for an accurate biolistic delivery of reagents into live tissue with a novel miniature gene gun. We are knocking down the expression of the axon guidance molecule Netrin in leech embryos by delivering molecules of dsRNA into the ventral body wall and ganglia of single segments.
A demonstration of the isolation of neonatal mouse spinal cord for electrophysiologic studies.
This video article details the experimental procedure for obtaining the Gibbs free energy of membrane protein folding by tryptophan fluorescence.
A MR imaging method to study the distribution of pulmonary blood flow under a variety of physiological conditions, in this case exposure to three different inspired oxygen concentrations: hypoxia, normoxia, and hyperoxia, is described. This technique utilizes human pulmonary physiology research techniques in an MR scanning environment.
Adult-born neurons expressing ChR2 can be manipulated in slice electrophysiological preparations in order to examine their contribution towards the function of olfactory neural circuits.
Adult-born neurons of the olfactory bulb can be optogenetically controlled using Channelrhodopsin2-expressing lentiviral injection in the rostral migratory stream and chronic photostimulation with an implanted miniature LED.
Here, we present a protocol to design and fabricate nanostructured porous silicon (PSi) films as degradable carriers for the nerve growth factor (NGF). Neuronal differentiation and outgrowth of PC12 cells and mice dorsal root ganglion (DRG) neurons are characterized upon treatment with the NGF-loaded PSi carriers.
This work presents a bottom-up approach to the engineering of local magnetic forces for control of neuronal organization. Neuron-like cells loaded with magnetic nanoparticles (MNPs) are plated atop and controlled by a micro-patterned platform with perpendicular magnetization. Also described are magnetic characterization, MNP cellular uptake, cell viability, and statistical analysis.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten