Anmelden

Sanford Consortium for Regenerative Medicine

5 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

Efficient Derivation of Human Neuronal Progenitors and Neurons from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Xuejun H. Parsons 1,2, Yang D. Teng 3,4, James F. Parsons 1,2, Evan Y. Snyder 1,2,5, David B. Smotrich 1,2,6, Dennis A. Moore 1,2
1San Diego Regenerative Medicine Institute, 2Xcelthera, 3Department of Neurosurgery, Harvard Medical School, 4Division of SCI Research, VA Boston Healthcare System, 5Program in Stem Cell & Regenerative Biology, Sanford-Burnham Medical Research Institute, 6La Jolla IVF

We have established a protocol for induction of neuroblasts direct from pluripotent human embryonic stem cells maintained under defined conditions with small molecules, which enables derivation of a large supply of human neuronal progenitors and neuronal cell types in the developing CNS for neural repair.

image

Biology

Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Xuejun H. Parsons 1,2, Yang D. Teng 3,4, James F. Parsons 1,2, Evan Y. Snyder 1,2,5, David B. Smotrich 1,2,6, Dennis A. Moore 1,2
1San Diego Regenerative Medicine Institute, 2Xcelthera, 3Department of Neurosurgery, Harvard Medical School, 4Division of SCI Research, VA Boston Healthcare System, 5Program in Stem Cell & Regenerative Biology, Sanford-Burnham Medical Research Institute, 6La Jolla IVF

We have established a protocol for induction of cardioblasts direct from pluripotent human embryonic stem cells maintained under defined conditions with small molecules, which enables derivation of a large supply of human cardiac progenitors and functional cardiomyocytes for cardiovascular repair.

image

Neuroscience

Post-differentiation Replating of Human Pluripotent Stem Cell-derived Neurons for High-content Screening of Neuritogenesis and Synapse Maturation
Barbara Calabrese 1,2, Regina M. Powers 1,2, Alexandria J. Slepian 1,2, Shelley Halpain 1,2
1Division of Biological Sciences, University of California, San Diego, 2Sanford Consortium for Regenerative Medicine

This protocol describes a detailed procedure for resuspending and culturing human stem cell derived neurons that were previously differentiated from neural progenitors in vitro for multiple weeks. The procedure facilitates imaging-based assays of neurites, synapses, and late-expressing neuronal markers in a format compatible with light microscopy and high-content screening.

image

Developmental Biology

Generation of 3D Whole Lung Organoids from Induced Pluripotent Stem Cells for Modeling Lung Developmental Biology and Disease
Sandra L. Leibel 1,2,3, Rachael N. McVicar 2,3, Alicia M. Winquist 2,3, Evan Y. Snyder 1,2,3
1Department of Pediatrics, University of California, San Diego School of Medicine, 2Sanford Consortium for Regenerative Medicine, 3Sanford Burnham Prebys Medical Discovery Institute

The article describes step wise directed differentiation of induced pluripotent stem cells to three-dimensional whole lung organoids containing both proximal and distal epithelial lung cells along with mesenchyme.

image

Developmental Biology

iPSC-Derived Epithelial, Mesenchymal, Endothelial, and Immune Cell Co-Culture to Model Airway Barrier Integrity in Lung Health and Disease
Rachael N. McVicar 1,2, Emily Smith 1,2, Melina Melameka 1,2, Anne Bush 1,2, Grace Goetz 1,2, Gailan Constantino 1,2, Matangi Kumar 1,2, Elizabeth Kwong 1,2, Evan Y. Snyder 1,2, Sandra L. Leibel 1,2,3
1Sanford Consortium for Regenerative Medicine, 2Sanford Burnham Prebys Medical Discovery Institute, 3Department of Pediatrics, University of California, San Diego School of Medicine

This article describes the generation of a complex, multi-cellular airway barrier model composed of induced pluripotent stem cell (iPSC)-derived lung epithelium, mesenchyme, endothelial cells, and macrophages in an air-liquid interface culture.

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten