We have established a protocol for induction of neuroblasts direct from pluripotent human embryonic stem cells maintained under defined conditions with small molecules, which enables derivation of a large supply of human neuronal progenitors and neuronal cell types in the developing CNS for neural repair.
We have established a protocol for induction of cardioblasts direct from pluripotent human embryonic stem cells maintained under defined conditions with small molecules, which enables derivation of a large supply of human cardiac progenitors and functional cardiomyocytes for cardiovascular repair.
This protocol describes a detailed procedure for resuspending and culturing human stem cell derived neurons that were previously differentiated from neural progenitors in vitro for multiple weeks. The procedure facilitates imaging-based assays of neurites, synapses, and late-expressing neuronal markers in a format compatible with light microscopy and high-content screening.
The article describes step wise directed differentiation of induced pluripotent stem cells to three-dimensional whole lung organoids containing both proximal and distal epithelial lung cells along with mesenchyme.
This article describes the generation of a complex, multi-cellular airway barrier model composed of induced pluripotent stem cell (iPSC)-derived lung epithelium, mesenchyme, endothelial cells, and macrophages in an air-liquid interface culture.