Anmelden

The equilibrium constant for a reaction is calculated from the equilibrium concentrations (or pressures) of its reactants and products. If these concentrations are known, the calculation simply involves their substitution into the Kc expression.

For example, gaseous nitrogen dioxide forms dinitrogen tetroxide according to this equation:

Eq1

When 0.10 mol NO2 is added to a 1.0-L flask at 25 °C, the concentration changes so that at equilibrium, [NO2] = 0.016 M and [N2O4] = 0.042 M. The value of the equilibrium constant for the reaction can be calculated as follows:

Eq2

A slightly more challenging example is provided next, in which the reaction stoichiometry is used to derive equilibrium concentrations from the information provided. The basic strategy of this computation is helpful for many types of equilibrium computations and relies on the use of terms for the reactant and product concentrations initially present, for how they change as the reaction proceeds, and for what they are when the system reaches equilibrium. The acronym ICE is commonly used to refer to this mathematical approach, and the concentration terms are usually gathered in a tabular format called an ICE table.

Calculation of an Equilibrium Constant

Iodine molecules react reversibly with iodide ions to produce triiodide ions.

Eq3

If a solution with the concentrations of I2 and I both equal to 1.000 × 10−3 M before reaction gives an equilibrium concentration of I2 of 6.61 × 10−4 M, what is the equilibrium constant for the reaction?

To calculate the equilibrium constants, equilibrium concentrations are needed for all the reactants and products:

Eq4

The initial concentrations of the reactants and the equilibrium concentration of the product are provided. This information can be used to derive terms for the equilibrium concentrations of the reactants, presenting all the information in an ICE table.

I2 (aq) I(aq) I3(aq)
Initial Concentration (M) 1.000 × 10−3 1.000 × 10−3 0
Change (M) −x −x +x
Equilibrium Concentration (M) 1.000 × 10−3 − x 1.000 × 10-3 − x x

At equilibrium the concentration of I2 is 6.61 × 10−4 M so that

Eq5

The ICE table may now be updated with numerical values for all its concentrations:

I2 (aq) I(aq) I3(aq)
Initial Concentration (M) 1.000 × 10−3 1.000 × 10−3 0
Change (M) −3.39 × 10−4 −3.39 × 10−4 +3.39 × 10-4
Equilibrium Concentration (M) 6.61 × 10−4 6.61 × 10−4 3.39 × 10−4

Finally, the equilibrium concentrations can be substituted into the Kc expression and solved:

Eq6

This text has been adapted from Openstax, Chemistry 2e, Section 13.4 Equilibrium Calculations.

Tags

Equilibrium ConstantKcEquilibrium Constant ExpressionConcentrationsReactantsProductsEquilibriumGaseous MixtureSulfur DioxideOxygenSulfur TrioxideInitial ConcentrationReaction StoichiometryICE TableNitrogenHydrogenAmmonia Gas

Aus Kapitel 14:

article

Now Playing

14.4 : Calculating the Equilibrium Constant

Chemisches Gleichgewicht

29.7K Ansichten

article

14.1 : Fließgleichgewicht

Chemisches Gleichgewicht

48.5K Ansichten

article

14.2 : Die Gleichgewichtskonstante

Chemisches Gleichgewicht

45.0K Ansichten

article

14.3 : Homogene Gleichgewichte für gasförmige Reaktionen

Chemisches Gleichgewicht

23.2K Ansichten

article

14.5 : Reaktionsquotient

Chemisches Gleichgewicht

47.1K Ansichten

article

14.6 : Berechnung von Gleichgewichtskonzentrationen

Chemisches Gleichgewicht

46.0K Ansichten

article

14.7 : Das Prinzip von Le Chatelier: Veränderte Konzentration

Chemisches Gleichgewicht

56.3K Ansichten

article

14.8 : Das Prinzip von Le Chatelier: Ändern des Volumens (Druck)

Chemisches Gleichgewicht

33.2K Ansichten

article

14.9 : Das Prinzip von Le Chatelier: Temperaturwechsel

Chemisches Gleichgewicht

28.2K Ansichten

article

14.10 : Die kleine x Annahme

Chemisches Gleichgewicht

45.3K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten