Anmelden

Binary Acids and Bases

In the absence of any leveling effect, the acid strength of binary compounds of hydrogen with nonmetals (A) increases as the H-A bond strength decreases down a group in the periodic table. For group 17, the order of increasing acidity is HF < HCl < HBr < HI. Likewise, for group 16, the order of increasing acid strength is H2O < H2S < H2Se < H2Te. Across a row in the periodic table, the acid strength of binary hydrogen compounds increases with increasing electronegativity of the nonmetal atom because the polarity of the H-A bond increases. Thus, the order of increasing acidity (for removal of one proton) across the second row is CH4 < NH3 < H2O < HF; across the third row, it is SiH4 < PH3 < H2S < HCl.

Ternary Acids and Bases

Ternary compounds composed of hydrogen, oxygen, and some third element (“E”) may be structured as depicted in the image below. In these compounds, the central E atom is bonded to one or more O atoms, and at least one of the O atoms is also bonded to an H atom, corresponding to the general molecular formula OmE(OH)n. These compounds may be acidic, basic, or amphoteric depending on the properties of the central E atom. Examples of such compounds include sulfuric acid, O2S(OH)2, sulfurous acid, OS(OH)2, nitric acid, O2NOH, perchloric acid, O3ClOH, aluminum hydroxide, Al(OH)3, calcium hydroxide, Ca(OH)2, and potassium hydroxide, KOH.

Eq1

If the central atom, E, has a low electronegativity, its attraction for electrons is low. Little tendency exists for the central atom to form a strong covalent bond with the oxygen atom, and bond a between the element and oxygen is more readily broken than bond b between oxygen and hydrogen. Hence bond a is ionic, hydroxide ions are released to the solution, and the material behaves as a base—this is the case with Ca(OH)2 and KOH. Lower electronegativity is characteristic of the more metallic elements; hence, the metallic elements form ionic hydroxides that are, by definition, basic compounds.

If, on the other hand, the atom E has a relatively high electronegativity, it strongly attracts the electrons it shares with the oxygen atom, making a relatively strong covalent bond. The oxygen-hydrogen bond, bond b, is thereby weakened because electrons are displaced toward E. Bond b is polar and readily releases hydrogen ions to the solution, so the material behaves as an acid. High electronegativities are characteristic of the more nonmetallic elements. Thus, nonmetallic elements form covalent compounds containing acidic −OH groups that are called oxyacids.

Increasing the oxidation number of the central atom E also increases the acidity of an oxyacid because this increases the attraction of E for the electrons it shares with oxygen and thereby weakens the O-H bond. Sulfuric acid, H2SO4, or O2S(OH)2 (with a sulfur oxidation number of +6), is more acidic than sulfurous acid, H2SO3, or OS(OH)2 (with a sulfur oxidation number of +4). Likewise, nitric acid, HNO3, or O2NOH (N oxidation number = +5), is more acidic than nitrous acid, HNO2, or ONOH (N oxidation number = +3). In each of these pairs, the oxidation number of the central atom is larger for the stronger acid.

Carboxylic Acids

Carboxylic acids contain a carboxyl group. Carboxylic acids are weak acids meaning they are not 100% ionized in water.

Carboxylic acid acts as a weak acid because, as in the case of oxyacids, the second oxygen attached to the carbon atom increases the polarity of the O-H bond and makes it weaker. Further, after the loss of the proton, the carboxyl group is converted to the carboxylate ion, which exhibits resonance. The different resonance structures stabilize the carboxylate ion as its negative charge is delocalized over several atoms.

This text is adapted from Openstax, Chemistry 2e, Section 14.3: Relative Strengths of Acids and Bases and Openstax, Chemistry 2e, Section 20.3 Aldehydes, Ketones, Carboxylic Acids, and Esters.

Tags
Acid Acid StrengthMolecular StructureHydrochloric AcidHydrofluoric AcidBond EnergyBond PolarityBinary AcidsWeak AcidStrong AcidProton DonationElectronegativity

Aus Kapitel 15:

article

Now Playing

15.13 : Acid Strength and Molecular Structure

Säuren und Basen

30.2K Ansichten

article

15.1 : Bronsted-Lowry Säuren und Basen

Säuren und Basen

88.3K Ansichten

article

15.2 : Säure-Basen-Stärken und Dissoziationskonstanten

Säuren und Basen

59.1K Ansichten

article

15.3 : Wasser: A Bronsted-Lowry-Säure und Base

Säuren und Basen

48.7K Ansichten

article

15.4 : pH-Skala

Säuren und Basen

66.8K Ansichten

article

15.5 : Relative Stärken von konjugierten Säure-Base-Paaren

Säuren und Basen

44.5K Ansichten

article

15.6 : Starke Säure- und Basenlösungen

Säuren und Basen

30.7K Ansichten

article

15.7 : Schwach saure Lösungen

Säuren und Basen

36.9K Ansichten

article

15.8 : Schwache Basislösungen

Säuren und Basen

22.0K Ansichten

article

15.9 : Mischungen von Säuren

Säuren und Basen

19.3K Ansichten

article

15.10 : Ionen als Säuren und Basen

Säuren und Basen

22.8K Ansichten

article

15.11 : Bestimmung des pH-Werts von Salzlösungen

Säuren und Basen

42.7K Ansichten

article

15.12 : Polyprotische Säuren

Säuren und Basen

28.3K Ansichten

article

15.14 : Lewis-Säuren und -Basen

Säuren und Basen

42.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten