Anmelden

As the name suggests, non-LTR retrotransposons lack the long terminal repeats characteristic of the LTR retrotransposons. Additionally, both LTR and non-LTR retrotransposons use distinct mechanisms of mobilization. Non-LTR retrotransposons are further divided into two classes - Long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs), both of which occur abundantly in most mammals, including humans. Some of the active non-LTR retrotransposons in humans are L1 elements (LINE) and the Alu elements (SINE).

Transposition is typically a chance occurrence, which means the location where the transposable element is inserted is random. Transposons that are randomly inserted into genes can interfere with gene expression and cause genetic dysfunctions. A classic example is the insertion of the L1 retrotransposon into the factor VIII gene that causes hemophilia. L1 integration in the tumor suppressor gene Adenomatous polyposis coli (APC) has also been found in colon cancer patients. The SINE element Alu causes chromosomal aberrations and also has been linked to congenital defects like neurofibromatosis.

The cellular mechanism for repression of retrotransposons involves chemical modifications such as methylation of LINE elements or producing truncated retrotransposons. The vast majority of LINE and SINE elements in the human genome are truncated at their 5’ end due to erroneous reverse transcription. Such retrotransposons are usually silent, meaning they do not affect gene expression after insertion.

The occurrence of retrotransposons in cancerous cells has been exploited to develop retrotransposons like L1, as cancer biomarkers. It has been observed that methylation of L1 is significantly reduced in cancerous cells. This type of hypomethylation leads to genomic instability. Hypomethylated L1 levels have been investigated as biomarkers for malignancies like breast, colon, and skin cancer.

Tags

Non LTR RetrotransposonsClass I TransposonsHuman GenomeLTR RetrotransposonsLong Interspersed Nuclear Elements LINEsShort Interspersed Nuclear Elements SINEsAutonomous RetrotransposonsNon autonomous RetrotransposonsL1 ElementsOpen Reading Frames ORF1ORF2RNA Binding ProteinChaperone ActivitiesReverse TranscriptaseEndonuclease DomainsMobilizationRNA Polymerase IIL1 RNAPolyadenylationCytoplasmTranslationL1 Ribonucleoprotein RNPEndonuclease Activity

Aus Kapitel 7:

article

Now Playing

7.15 : Nicht-LTR-Retrotransposons

DNA-Reparatur und Rekombination

11.2K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

27.4K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.4K Ansichten

article

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

11.0K Ansichten

article

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.8K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

8.9K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.5K Ansichten

article

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.5K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

14.8K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.1K Ansichten

article

7.13 : Retroviren

DNA-Reparatur und Rekombination

11.8K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten