Anmelden

Adolf von Baeyer attempted to explain the instabilities of small and large cycloalkane rings using the concept of angle strain — the strain caused by the deviation of bond angles from the ideal 109.5° tetrahedral value for sp3 hybridized carbons. However, while cyclopropane and cyclobutane are strained, as expected from their highly compressed bond angles, cyclopentane is more strained than predicted, and cyclohexane is virtually strain-free. Hence, Baeyer’s theory that was based on the assumption that all cycloalkanes are flat was wrong, and, in reality, most cycloalkanes adopt a non-planar structure.

Cyclopropane, the three-carbon cyclic alkane, has the highest angle strain since its planar structure is highly compressed, deviating by 49.5° from the ideal value. Additionally, cyclopropane has a torsional strain due to the eclipsing interaction between six C-H bonds. Hence, cyclopropane has an overall ring strain of 116 kJ/mol. Unlike cyclopropane, which is planar, cyclobutane takes up a more stable, folded non-planar conformation. Folding causes the angle strain to be slightly elevated compared to the hypothetical planar cyclobutane, but the torsional strain from the ten eclipsing hydrogens is greatly relieved. Cyclobutane has an overall strain of 110 kJ/mol. Cyclopentane also adopts a non-planar conformation known as envelope conformation. Compared to the hypothetical planar form of cyclopentane, the envelope form has its bond angles slightly reduced, which marginally increases the angle strain. However, it significantly alleviates the torsional strain from ten eclipsing C-H bonds. Hence, the overall strain in cyclopentane is 27 kJ/mol.

Tags

CycloalkanesAngle StrainCyclopropaneCyclobutaneCyclopentaneCyclohexaneNon planar StructureRing StrainTorsional StrainConformations

Aus Kapitel 3:

article

Now Playing

3.9 : Conformations of Cycloalkanes

Alkane und Cycloalkane

11.3K Ansichten

article

3.1 : Struktur der Alkane

Alkane und Cycloalkane

26.2K Ansichten

article

3.2 : Konstitutionelle Isomere von Alkanen

Alkane und Cycloalkane

17.3K Ansichten

article

3.3 : Nomenklatur der Alkane

Alkane und Cycloalkane

20.5K Ansichten

article

3.4 : Physikalische Eigenschaften von Alkanen

Alkane und Cycloalkane

10.5K Ansichten

article

3.5 : Newman-Projektionen

Alkane und Cycloalkane

15.8K Ansichten

article

3.6 : Konformationen von Ethan und Propan

Alkane und Cycloalkane

13.3K Ansichten

article

3.7 : Konformationen von Butan

Alkane und Cycloalkane

13.4K Ansichten

article

3.8 : Cycloalkane

Alkane und Cycloalkane

11.8K Ansichten

article

3.10 : Konformationen von Cyclohexan

Alkane und Cycloalkane

11.7K Ansichten

article

3.11 : Stuhlkonformation von Cyclohexan

Alkane und Cycloalkane

13.9K Ansichten

article

3.12 : Stabilität von substituierten Cyclohexanen

Alkane und Cycloalkane

12.1K Ansichten

article

3.13 : Disubstituierte Cyclohexane: cis-trans-Isomerie

Alkane und Cycloalkane

11.5K Ansichten

article

3.14 : Verbrennungsenergie: Ein Maß für die Stabilität von Alkanen und Cycloalkanen

Alkane und Cycloalkane

6.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten