Anmelden

Chirality is the most intriguing yet essential facet of nature, governing life’s biochemical processes and precision. It can be observed from a snail shell pattern in a macroscopic world to an amino acid, the minutest building block of life. Most of the snails around the world have right-coiled shells because of the intrinsic chirality in their genes. All the amino acids present in the human body exist in an enantiomerically pure state, except for glycine - the sole achiral amino acid. The chirality of amino acids has a significant consequence on the symmetry and function of naturally occurring proteins and enzymes. With 268 chiral centers, human chymotrypsin could exist in 2268 possible configurations if each amino acid took either of the enantiomeric forms. However, the role of chirality has ordained a single chiral chymotrypsin as the selective digestive enzyme.

Another critical aspect in the cascade of biochemical processes is that most enzymes interact with only one of the enantiomers due to their chirality. Consequently, enantioselectivity arises, like a lock-and-key mechanism, where only one enantiomer can fit into the enzyme’s binding site. This has a significant implication in the domain of drug design, where each enantiomer can induce a different effect. The role of chirality was brought to light in a devastating way nearly five decades ago when the drug thalidomide was prescribed for the treatment of morning sickness in pregnant women. Ever since, the properties of each enantiomer have been ascertained for every drug designed.

Most interestingly, this facet of chirality extends from the microcosm to the macrocosm. When Pasteur discovered the connection between optical activity and molecular chirality, it led him to conjecture that even the forces of nature are chiral. This has now been proven across the universe in the weak interactions between fundamental particles, which can violate parity symmetry.

Tags
ChiralityNatureBiochemical ProcessesSnail ShellAmino AcidEnantiomerGlycineProteinsEnzymesHuman ChymotrypsinEnantioselectivityDrug DesignThalidomide

Aus Kapitel 4:

article

Now Playing

4.12 : Chirality in Nature

Stereoisomerie

11.8K Ansichten

article

4.1 : Chiralität

Stereoisomerie

21.6K Ansichten

article

4.2 : Isomerie

Stereoisomerie

17.3K Ansichten

article

4.3 : Stereoisomere

Stereoisomerie

12.1K Ansichten

article

4.4 : Benennung von Enantiomeren

Stereoisomerie

19.4K Ansichten

article

4.5 : Eigenschaften von Enantiomeren und optischer Aktivität

Stereoisomerie

16.3K Ansichten

article

4.6 : Moleküle mit mehreren chiralen Zentren

Stereoisomerie

10.8K Ansichten

article

4.7 : Fischer-Projektionen

Stereoisomerie

12.6K Ansichten

article

4.8 : racemische Gemische und die Auflösung von Enantiomeren

Stereoisomerie

17.7K Ansichten

article

4.9 : Stereoisomerie zyklischer Verbindungen

Stereoisomerie

8.5K Ansichten

article

4.10 : Chiralität bei Stickstoff, Phosphor und Schwefel

Stereoisomerie

5.5K Ansichten

article

4.11 : Prochiralität

Stereoisomerie

3.7K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten