Anmelden

Kinetic studies of ionization of a tertiary halide in a protic solvent suggest that only the substrate participates in the rate-determining step (slow step). The nucleophile is involved only after the slowest step. The SN1 reaction takes place in a multiple-step mechanism.

Firstly, the haloalkane ionizes to generate a carbocation intermediate and a halide ion. This heterolytic cleavage is highly endothermic with large activation energy. The ionization of the substrate, facilitated by a polar protic solvent, is the slowest of all steps, making it the rate-determining step of an SN1 reaction. The ions formed are stabilized through solvation. In the second step, the reactive carbocation intermediate behaves as a strong electrophile and is attacked by the nucleophilic solvent molecule that quickly donates an electron pair to generate an oxonium ion. This process is exothermic. In the third step, the solvent abstracts a proton from the oxonium ion to yield the final nucleophilic substituted product.

Thus, the SN1 reaction consists of two core steps for substitution and an additional step of proton loss. The mechanism further suggests that several factors such as the stability of the carbocation, the nature of the leaving group, and the nature of the solvent used, favor the SN1 mechanism.

Tags
SN1 ReactionMechanismKinetic StudiesIonizationTertiary HalideProtic SolventRate determining StepNucleophileMultiple step MechanismCarbocation IntermediateHalide IonHeterolytic CleavageActivation EnergyPolar Protic SolventSolvationElectrophileOxonium IonExothermicNucleophilic Substituted ProductProton LossStability Of CarbocationLeaving GroupNature Of Solvent

Aus Kapitel 6:

article

Now Playing

6.12 : SN1 Reaction: Mechanism

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

11.0K Ansichten

article

6.1 : Alkylhalogenide

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

14.9K Ansichten

article

6.2 : Nukleophile Substitutionsreaktionen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

14.9K Ansichten

article

6.3 : Nukleophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

12.4K Ansichten

article

6.4 : Elektrophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.8K Ansichten

article

6.5 : Verlassen von Gruppen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.1K Ansichten

article

6.6 : Karbationen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

10.5K Ansichten

article

6.7 : SN2 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.7K Ansichten

article

6.8 : SN2 Reaktion: Mechanismus

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.2K Ansichten

article

6.9 : SN2 Reaktion: Übergangszustand

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.0K Ansichten

article

6.10 : SN2 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.8K Ansichten

article

6.11 : SN1 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.4K Ansichten

article

6.13 : SN1 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.0K Ansichten

article

6.14 : Vorhersage von Produkten: SN1 vs. SN2

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.0K Ansichten

article

6.15 : Eliminationsreaktionen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

12.4K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten