JoVE Logo

Anmelden

10.12 : Herstellung von Alkoholen durch Substitutionsreaktionen

Overview

Alcohols can be synthesized from alkyl halides via nucleophilic substitution reactions. The highly polar carbon-halogen bond in the substrate makes halide a good leaving group. The hydroxide ion or water can act as a nucleophile to take the place of halide and form an alcohol. The substitution reactions occur via two different reaction pathways, SN1 or SN2, depending on the nature of carbon attached to the halide.

Primary alcohols are synthesized from primary alkyl halides, and the reaction proceeds via the SN2 mechanism. The nucleophile attacks the halogen-bearing carbon from the side opposite to the carbon-halogen bond. However, in the presence of a strong nucleophile, a competing elimination reaction occurs as well.

Figure1

Figure_1: Parallel reactions of 1-bromobutane into substitution products and elimination products (proton abstraction).

The synthesis of secondary alcohols from secondary alkyl halides via substitution reaction is not favored since a mixture of products is formed from the competing SN2 and E2 reaction routes.

Figure2

Figure_2: Parallel reactions of 2-bromo-3-methylbutane into substitution products and elimination products (proton abstraction).

Tertiary alkyl halides undergo SN1 reaction with a weak base such as water to produce tertiary alcohols along with alkene as a minor product due to a competing E2 elimination reaction.

Figure3

Figure_3: Parallel reactions of tertiary alkyl halides to elimination and substitution products.

If a strong nucleophile like sodium hydroxide is used, the E1 reaction dominates over SN1.

The nature of the reactant determines the stereochemistry of the product formed. If the halogen in the alkyl halide is connected to a chiral carbon, the resulting alcohol is a mixture of two enantiomers.

Figure4

Figure_4: Substitution reaction over an asymmetric carbon to yield a racemic mixture of optically active alcohols as the product

Tags

Alkyl HalidesNucleophilic Substitution ReactionsLeaving GroupHydroxide IonWaterAlcohol SynthesisSN1 MechanismSN2 MechanismPrimary AlcoholsPrimary Alkyl HalidesStrong NucleophileElimination ReactionSecondary AlcoholsSecondary Alkyl HalidesMixture Of ProductsE2 Reaction RouteTertiary Alkyl HalidesWeak BaseAlkene Production

Aus Kapitel 10:

article

Now Playing

10.12 : Herstellung von Alkoholen durch Substitutionsreaktionen

Alkohole und Phenole

5.7K Ansichten

article

10.1 : Struktur und Nomenklatur von Alkoholen und Phenolen

Alkohole und Phenole

15.9K Ansichten

article

10.2 : Physikalische Eigenschaften von Alkoholen und Phenolen

Alkohole und Phenole

13.8K Ansichten

article

10.3 : Säure und Basizität von Alkoholen und Phenolen

Alkohole und Phenole

18.4K Ansichten

article

10.4 : Herstellung von Alkoholen durch Additionsreaktionen

Alkohole und Phenole

6.1K Ansichten

article

10.5 : Säurekatalysierte Dehydratisierung von Alkoholen zu Alkenen

Alkohole und Phenole

18.9K Ansichten

article

10.6 : Alkohole aus Carbonylverbindungen: Reduktion

Alkohole und Phenole

10.1K Ansichten

article

10.7 : Alkohole aus Carbonylverbindungen: Grignard-Reaktion

Alkohole und Phenole

5.1K Ansichten

article

10.8 : Schutz vor Alkoholen

Alkohole und Phenole

7.2K Ansichten

article

10.9 : Aufbereitung von Diolen und Pinacol Rearrangement

Alkohole und Phenole

3.3K Ansichten

article

10.10 : Umwandlung von Alkoholen in Alkylhalogenide

Alkohole und Phenole

7.1K Ansichten

article

10.11 : Oxidation von Alkoholen

Alkohole und Phenole

12.7K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten