JoVE Logo

로그인

10.12 : Preparation of Alcohols via Substitution Reactions

Overview

Alcohols can be synthesized from alkyl halides via nucleophilic substitution reactions. The highly polar carbon-halogen bond in the substrate makes halide a good leaving group. The hydroxide ion or water can act as a nucleophile to take the place of halide and form an alcohol. The substitution reactions occur via two different reaction pathways, SN1 or SN2, depending on the nature of carbon attached to the halide.

Primary alcohols are synthesized from primary alkyl halides, and the reaction proceeds via the SN2 mechanism. The nucleophile attacks the halogen-bearing carbon from the side opposite to the carbon-halogen bond. However, in the presence of a strong nucleophile, a competing elimination reaction occurs as well.

Figure1

Figure_1: Parallel reactions of 1-bromobutane into substitution products and elimination products (proton abstraction).

The synthesis of secondary alcohols from secondary alkyl halides via substitution reaction is not favored since a mixture of products is formed from the competing SN2 and E2 reaction routes.

Figure2

Figure_2: Parallel reactions of 2-bromo-3-methylbutane into substitution products and elimination products (proton abstraction).

Tertiary alkyl halides undergo SN1 reaction with a weak base such as water to produce tertiary alcohols along with alkene as a minor product due to a competing E2 elimination reaction.

Figure3

Figure_3: Parallel reactions of tertiary alkyl halides to elimination and substitution products.

If a strong nucleophile like sodium hydroxide is used, the E1 reaction dominates over SN1.

The nature of the reactant determines the stereochemistry of the product formed. If the halogen in the alkyl halide is connected to a chiral carbon, the resulting alcohol is a mixture of two enantiomers.

Figure4

Figure_4: Substitution reaction over an asymmetric carbon to yield a racemic mixture of optically active alcohols as the product

Tags

Alkyl HalidesNucleophilic Substitution ReactionsLeaving GroupHydroxide IonWaterAlcohol SynthesisSN1 MechanismSN2 MechanismPrimary AlcoholsPrimary Alkyl HalidesStrong NucleophileElimination ReactionSecondary AlcoholsSecondary Alkyl HalidesMixture Of ProductsE2 Reaction RouteTertiary Alkyl HalidesWeak BaseAlkene Production

장에서 10:

article

Now Playing

10.12 : Preparation of Alcohols via Substitution Reactions

Alcohols and Phenols

5.7K Views

article

10.1 : 알코올과 페놀의 구조와 명명법

Alcohols and Phenols

15.9K Views

article

10.2 : 알코올과 페놀의 물리적 특성

Alcohols and Phenols

13.8K Views

article

10.3 : 알코올과 페놀의 산도와 염기성

Alcohols and Phenols

18.4K Views

article

10.4 : 첨가 반응을 통한 알코올 제조

Alcohols and Phenols

6.1K Views

article

10.5 : 알켄으로의 알코올의 산 촉매 탈수

Alcohols and Phenols

18.9K Views

article

10.6 : 카르보닐 화합물로부터의 알코올 : 환원

Alcohols and Phenols

10.1K Views

article

10.7 : 카르보닐 화합물의 알코올: 그리나드 반응

Alcohols and Phenols

5.1K Views

article

10.8 : 알코올 보호

Alcohols and Phenols

7.2K Views

article

10.9 : Diols 및 Pinacol 재배열의 준비

Alcohols and Phenols

3.3K Views

article

10.10 : 알코올을 알킬 할라이드로 전환

Alcohols and Phenols

7.1K Views

article

10.11 : 알코올의 산화

Alcohols and Phenols

12.7K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유