JoVE Logo

Anmelden

Introduction

Alkynes can be prepared by dehydrohalogenation of vicinal or geminal dihalides in the presence of a strong base like sodium amide in liquid ammonia. The reaction proceeds with the loss of two equivalents of hydrogen halide (HX) via two successive E2 elimination reactions.

Figure1

Reaction Mechanism – E2 pathway

Vicinal dihalides

In the first elimination step, the strong base abstracts the proton from the dihalide that is oriented anti to the leaving group. Since E2 reactions follow a concerted pathway, the abstraction of a proton and departure of the halide leaving group occur simultaneously to form a haloalkene.

Figure2

In the second elimination reaction, another equivalent of the strong base reacts with the haloalkene in a similar fashion to give the desired alkyne.

Figure3

Geminal dihalides

Likewise, geminal dihalides, when treated with two equivalents of a sodium amide, undergo double dehydrohalogenation to give alkynes.

Figure4

Figure5

Terminal dihalides

Dehydrohalogenation of terminal dihalides yields terminal alkynes as the final product. In the presence of a strong base like sodium amide, terminal alkynes get converted to acetylide ions. In such cases, a third equivalent of the base is required to complete the dehydrohalogenation of the remaining haloalkene.

Figure6

Protonation of the acetylide ions with water or an aqueous acid completes the reaction.

Figure7

Application in Organic Synthesis

Dehydrohalogenation of vicinal dihalides is a useful intermediate step in the conversion of alkenes to alkynes. For example, chlorination of 1-propene gives 1,2-dichloropropane – a vicinal dihalide, which upon double dehydrohalogenation yields 1-propyne.

Figure8

Similarly, alkynes can also be synthesized from ketones via dehydrohalogenation of geminal dihalides. For example, treatment of acetone with phosphorous pentachloride yields 2,2-dichloropropane – a geminal dihalide, which undergoes double dehydrohalogenation to give 1-propyne.

Figure9

Tags

AlkynesDehydrohalogenationVicinal DihalidesGeminal DihalidesStrong BaseSodium AmideLiquid AmmoniaReaction MechanismE2 PathwayHaloalkeneTerminal DihalidesAcetylide IonsOrganic Synthesis

Aus Kapitel 9:

article

Now Playing

9.5 : Preparation of Alkynes: Dehydrohalogenation

Alkine

15.5K Ansichten

article

9.1 : Struktur und physikalische Eigenschaften von Alkinen

Alkine

10.0K Ansichten

article

9.2 : Nomenklatur der Alkine

Alkine

17.7K Ansichten

article

9.3 : Säuregehalt von 1-Alkinen

Alkine

9.4K Ansichten

article

9.4 : Herstellung von Alkinen: Alkylierungsreaktion

Alkine

9.7K Ansichten

article

9.6 : Elektrophile Zugabe zu Alkinen: Halogenierung

Alkine

8.0K Ansichten

article

9.7 : Elektrophile Zugabe zu Alkinen: Hydrohalogenierung

Alkine

9.8K Ansichten

article

9.8 : Alkine zu Aldehyden und Ketonen: Säurekatalysierte Hydratation

Alkine

8.1K Ansichten

article

9.9 : Alkine zu Aldehyden und Ketonen: Hydroborierung-Oxidation

Alkine

17.6K Ansichten

article

9.10 : Alkine zu Carbonsäuren: Oxidative Spaltung

Alkine

4.8K Ansichten

article

9.11 : Reduktion von Alkinen zu cis-Alkenen: Katalytische Hydrierung

Alkine

7.6K Ansichten

article

9.12 : Reduktion von Alkinen zu trans-Alkenen: Natrium in flüssigem Ammoniak

Alkine

9.0K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten