JoVE Logo

Accedi

Introduction

Alkynes can be prepared by dehydrohalogenation of vicinal or geminal dihalides in the presence of a strong base like sodium amide in liquid ammonia. The reaction proceeds with the loss of two equivalents of hydrogen halide (HX) via two successive E2 elimination reactions.

Figure1

Reaction Mechanism – E2 pathway

Vicinal dihalides

In the first elimination step, the strong base abstracts the proton from the dihalide that is oriented anti to the leaving group. Since E2 reactions follow a concerted pathway, the abstraction of a proton and departure of the halide leaving group occur simultaneously to form a haloalkene.

Figure2

In the second elimination reaction, another equivalent of the strong base reacts with the haloalkene in a similar fashion to give the desired alkyne.

Figure3

Geminal dihalides

Likewise, geminal dihalides, when treated with two equivalents of a sodium amide, undergo double dehydrohalogenation to give alkynes.

Figure4

Figure5

Terminal dihalides

Dehydrohalogenation of terminal dihalides yields terminal alkynes as the final product. In the presence of a strong base like sodium amide, terminal alkynes get converted to acetylide ions. In such cases, a third equivalent of the base is required to complete the dehydrohalogenation of the remaining haloalkene.

Figure6

Protonation of the acetylide ions with water or an aqueous acid completes the reaction.

Figure7

Application in Organic Synthesis

Dehydrohalogenation of vicinal dihalides is a useful intermediate step in the conversion of alkenes to alkynes. For example, chlorination of 1-propene gives 1,2-dichloropropane – a vicinal dihalide, which upon double dehydrohalogenation yields 1-propyne.

Figure8

Similarly, alkynes can also be synthesized from ketones via dehydrohalogenation of geminal dihalides. For example, treatment of acetone with phosphorous pentachloride yields 2,2-dichloropropane – a geminal dihalide, which undergoes double dehydrohalogenation to give 1-propyne.

Figure9

Tags

AlkynesDehydrohalogenationVicinal DihalidesGeminal DihalidesStrong BaseSodium AmideLiquid AmmoniaReaction MechanismE2 PathwayHaloalkeneTerminal DihalidesAcetylide IonsOrganic Synthesis

Dal capitolo 9:

article

Now Playing

9.5 : Preparation of Alkynes: Dehydrohalogenation

Alchini

15.5K Visualizzazioni

article

9.1 : Struttura e proprietà fisiche degli alchini

Alchini

10.0K Visualizzazioni

article

9.2 : Nomenclatura degli alchini

Alchini

17.7K Visualizzazioni

article

9.3 : Acidità degli alchini

Alchini

9.4K Visualizzazioni

article

9.4 : Preparazione degli alchini: reazione di alchilazione

Alchini

9.7K Visualizzazioni

article

9.6 : Addizione elettrofila di alchini: alogenazione

Alchini

8.0K Visualizzazioni

article

9.7 : Addizione elettrofila di alchini: idroalogenazione

Alchini

9.7K Visualizzazioni

article

9.8 : Da alchini ad aldeidi e chetoni: idratazione acido-catalizzata

Alchini

8.1K Visualizzazioni

article

9.9 : Da alchini ad aldeidi e chetoni: idroborazione-ossidazione

Alchini

17.6K Visualizzazioni

article

9.10 : Da alchini ad acidi carbossilici: scissione ossidativa

Alchini

4.8K Visualizzazioni

article

9.11 : Riduzione degli alchini a cis-alcheni: idrogenazione catalitica

Alchini

7.6K Visualizzazioni

article

9.12 : Riduzione degli alchini a trans-alcheni: sodio in ammoniaca liquida

Alchini

9.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati