Anmelden

Thiols are prepared using the hydrosulfide anion as a nucleophile in a nucleophilic substitution reaction with alkyl halides. For instance, bromobutane reacts with sodium hydrosulfide to give butanethiol.

Figure1

This reaction fails because the thiol product can undergo a second nucleophilic substitution reaction in the presence of an excess alkyl halide to generate a sulfide as a by-product.

Figure2

This limitation can be overcome by using thiourea as the nucleophile. The reaction first produces an alkyl isothiourea salt as an intermediate, which forms thiol as a final product upon hydrolysis with an aqueous base.

Figure3

Thiols can readily oxidize to disulfides, sulfinic acid, and sulfonic acid. The oxidation of thiols to disulfides can even occur in the presence of atmospheric air. Thus, the high susceptibility of thiols to undergo air oxidation necessitates the storage of thiols in an inert atmosphere. Oxidation of thiols to disulfides can also be accomplished using reagents like molecular bromine or iodine in the presence of a base. Disulfides, however, can be easily reduced back to thiols by treatment with reducing agents such as HCl in the presence of zinc. Notably, oxidation of thiols to disulfides is a redox reaction. The interconversion between thiols and disulfides is ascribed to the bond strength of the S–S bond, which is approximately half the strength of other covalent bonds.

Tags
ThiolNucleophilic SubstitutionHydrosulfide AnionAlkyl HalideThioureaAlkyl Isothiourea SaltDisulfideSulfinic AcidSulfonic AcidOxidationReductionRedox ReactionS S Bond

Aus Kapitel 11:

article

Now Playing

11.14 : Preparation and Reactions of Thiols

Ether, Epoxide, Sulfide

5.8K Ansichten

article

11.1 : Struktur und Nomenklatur der Ether

Ether, Epoxide, Sulfide

10.7K Ansichten

article

11.2 : Physikalische Eigenschaften von Ethern

Ether, Epoxide, Sulfide

6.7K Ansichten

article

11.3 : Ether aus Alkoholen: Alkoholdehydrierung und Williamson-Ether-Synthese

Ether, Epoxide, Sulfide

9.9K Ansichten

article

11.4 : Ether aus Alkenen: Alkoholaddition und Alkoxymerkuration-Demerkuration

Ether, Epoxide, Sulfide

7.6K Ansichten

article

11.5 : Ether zu Alkylhalogeniden: Saure Spaltung

Ether, Epoxide, Sulfide

5.4K Ansichten

article

11.6 : Autoxidation von Ethern zu Peroxiden und Hydroperoxiden

Ether, Epoxide, Sulfide

7.1K Ansichten

article

11.7 : Kronen-Äther

Ether, Epoxide, Sulfide

5.0K Ansichten

article

11.8 : Struktur und Nomenklatur von Epoxiden

Ether, Epoxide, Sulfide

6.2K Ansichten

article

11.9 : Herstellung von Epoxiden

Ether, Epoxide, Sulfide

7.2K Ansichten

article

11.10 : Scharfe Epoxidierung

Ether, Epoxide, Sulfide

3.7K Ansichten

article

11.11 : Säurekatalysierte Ringöffnung von Epoxiden

Ether, Epoxide, Sulfide

6.9K Ansichten

article

11.12 : basenkatalysierte Ringöffnung von Epoxiden

Ether, Epoxide, Sulfide

8.1K Ansichten

article

11.13 : Struktur und Nomenklatur von Thiolen und Sulfiden

Ether, Epoxide, Sulfide

4.5K Ansichten

article

11.15 : Herstellung und Reaktionen von Sulfiden

Ether, Epoxide, Sulfide

4.6K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten