JoVE Logo

Anmelden

Enzyme kinetics studies the rates of biochemical reactions. Scientists monitor the reaction rates for a particular enzymatic reaction at various substrate concentrations. Additional trials with inhibitors or other molecules that affect the reaction rate may also be performed.

The experimenter can then plot the initial reaction rate or velocity (Vo) of a given trial against the substrate concentration ([S]) to obtain a graph of the reaction properties. For many enzymatic reactions involving a single substrate, this data fits the Michaelis-Menten equation, an equation derived by Leonor Michaelis and Maud Menten.

Eq1

The equation estimates the maximum velocity (Vmax) and the Michaelis constant (KM) for the enzyme being studied and is based on the following assumptions:

  1. No product is present at the start of the reaction.
  2. The rate of enzyme-substrate complex formation equals the rate of dissociation and breakdown into products.
  3. The enzyme concentration is minimal compared to the substrate concentration.
  4. Only the initial reaction rates are measured.
  5. The enzyme is present either in the free form or in the enzyme-substrate complex.

Different rearrangements of the Michaelis-Menten equation, such as the Lineweaver-Burke, Eadie-Hofsteot, and Hanes-Woolf plots, are alternate ways to graph kinetic parameters. The Lineweaver-Burke or double reciprocal plot is often used to estimate the KM and the Vmax. The plot uses the reciprocals values of the x and y-axis from the Michaelis-Menten plot. Mathematically, the y-intercept equals 1/Vmax, and the x-intercept equals −1/KM.

The Lineweaver-Burke plot can be used to visually differentiate between inhibitor types – competitive, non-competitive, and uncompetitive. Different rearrangements of the Michaelis-Menten equation, such as the Eadie-Hofstee and Hanes-Woolf plots, are also used to determine kinetic parameters.

Tags

Enzyme KineticsReaction RateSubstrate ConcentrationMichaelis Menten EquationVmaxKMLineweaver Burke PlotEadie Hofstee PlotHanes Woolf PlotEnzyme substrate ComplexInhibitor TypesCompetitive InhibitionNon competitive InhibitionUncompetitive Inhibition

Aus Kapitel 3:

article

Now Playing

3.13 : Einführung in die Enzymkinetik

Energie und Katalyse

19.5K Ansichten

article

3.1 : Der erste Hauptsatz der Thermodynamik

Energie und Katalyse

5.3K Ansichten

article

3.2 : Der zweite Hauptsatz der Thermodynamik

Energie und Katalyse

5.0K Ansichten

article

3.3 : Enthalpie in der Zelle

Energie und Katalyse

5.7K Ansichten

article

3.4 : Entropie innerhalb der Zelle

Energie und Katalyse

10.2K Ansichten

article

3.5 : Eine Einführung in die Freie Energie

Energie und Katalyse

8.0K Ansichten

article

3.6 : Endergone und exergone Reaktionen in der Zelle

Energie und Katalyse

14.4K Ansichten

article

3.7 : Die Gleichgewichtsbindungskonstante und die Bindungsstärke

Energie und Katalyse

9.0K Ansichten

article

3.8 : Freie Energie und Gleichgewicht

Energie und Katalyse

6.0K Ansichten

article

3.9 : Ungleichgewicht in der Zelle

Energie und Katalyse

4.1K Ansichten

article

3.10 : Oxidation und Reduktion von organischen Molekülen

Energie und Katalyse

5.9K Ansichten

article

3.11 : Einführung in Enzyme

Energie und Katalyse

16.8K Ansichten

article

3.12 : Enzyme und Aktivierungsenergie

Energie und Katalyse

11.4K Ansichten

article

3.14 : Wechselzahl und katalytische Effizienz

Energie und Katalyse

9.7K Ansichten

article

3.15 : Katalytisch perfekte Enzyme

Energie und Katalyse

3.8K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten