Anmelden

The ciliary structures were first seen in 1647 by Antonie Leeuwenhoek while observing the protozoans. In lower organisms, these appendages are responsible for cell movement, while in higher organisms, these appendages help in the movement of the extracellular fluids within the body cavities.

The cilia are made up of microtubules in a 9+2 arrangement, with nine microtubule doublet ring bundles, surrounding a pair of central singlet microtubule bundles. The doublet microtubule bundles are connected by nexin protein and axonemal dyneins. Radial spokes connect these outer doublet microtubules to the inner central pair. The coordinated movement of axonemal dyneins is responsible for the characteristic whip-like movement of the cilia. This characteristic ciliary movement is explained by the switch inhibition or switch-point mechanism proposed by Wais-Steider and Satir in 1979. The model suggests that during the ciliary motion, only half of the dyneins are active at a given time, while the other remains inactive. The axonemal dyneins on either side alternately switch between active and inactive forms to propel the ciliary motion. The sliding microtubules within the cilia require energy from ATP hydrolysis within the heavy chain domain of the axonemal dyneins.

Cilia in humans move rhythmically; they constantly remove waste materials such as dust, mucus, and bacteria through the airways, away from the lungs, and toward the mouth. Beating cilia on cells in the female fallopian tubes move egg cells from the ovary towards the uterus. A flagellum is an appendage larger than a cilium and specialized for cell locomotion. In humans, sperms are the only flagellated cell that must propel themselves towards female egg cells during fertilization.

Tags
Ciliary MotionCiliaMicrotubulesAxonemal DyneinsNexin ProteinSwitch Inhibition MechanismATP HydrolysisRhythmic MovementFlagellumProtozoansCell LocomotionWaste RemovalFemale Fallopian TubesFertilization

Aus Kapitel 26:

article

Now Playing

26.10 : Mechanismus der Ziliarbewegung

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

3.5K Ansichten

article

26.1 : Mikrotubuli

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

6.9K Ansichten

article

26.2 : Mikrotubuli-Instabilität

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

3.3K Ansichten

article

26.3 : Mikrotubuli-Formation

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

5.3K Ansichten

article

26.4 : Mikrotubuli-assoziierte Proteine (MAPs)

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

3.9K Ansichten

article

26.5 : Destabilisierung von Mikrotubuli

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

2.5K Ansichten

article

26.6 : Mikrotubuli-assoziierte Motorproteine

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

7.4K Ansichten

article

26.7 : Die Bewegung von Organellen und Vesikeln

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

4.2K Ansichten

article

26.8 : Aufbau komplexer Mikrotubuli-Strukturen

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

1.8K Ansichten

article

26.9 : Mikrotubuli in der Zellmotilität

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

3.1K Ansichten

article

26.11 : Mikrotubuli in der Signalübertragung

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

1.7K Ansichten

article

26.12 : Medikamente, die Mikrotubuli stabilisieren

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

1.9K Ansichten

article

26.13 : Medikamente, die Mikrotubuli destabilisieren

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

1.9K Ansichten

article

26.14 : Die Struktur der Intermediärfilamente

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

3.7K Ansichten

article

26.15 : Arten von Intermediärfilamenten

Das Zytoskelett II: Mikrotubuli und Intermediärfilamente

3.5K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten