Accedi

The ciliary structures were first seen in 1647 by Antonie Leeuwenhoek while observing the protozoans. In lower organisms, these appendages are responsible for cell movement, while in higher organisms, these appendages help in the movement of the extracellular fluids within the body cavities.

The cilia are made up of microtubules in a 9+2 arrangement, with nine microtubule doublet ring bundles, surrounding a pair of central singlet microtubule bundles. The doublet microtubule bundles are connected by nexin protein and axonemal dyneins. Radial spokes connect these outer doublet microtubules to the inner central pair. The coordinated movement of axonemal dyneins is responsible for the characteristic whip-like movement of the cilia. This characteristic ciliary movement is explained by the switch inhibition or switch-point mechanism proposed by Wais-Steider and Satir in 1979. The model suggests that during the ciliary motion, only half of the dyneins are active at a given time, while the other remains inactive. The axonemal dyneins on either side alternately switch between active and inactive forms to propel the ciliary motion. The sliding microtubules within the cilia require energy from ATP hydrolysis within the heavy chain domain of the axonemal dyneins.

Cilia in humans move rhythmically; they constantly remove waste materials such as dust, mucus, and bacteria through the airways, away from the lungs, and toward the mouth. Beating cilia on cells in the female fallopian tubes move egg cells from the ovary towards the uterus. A flagellum is an appendage larger than a cilium and specialized for cell locomotion. In humans, sperms are the only flagellated cell that must propel themselves towards female egg cells during fertilization.

Tags
Ciliary MotionCiliaMicrotubulesAxonemal DyneinsNexin ProteinSwitch Inhibition MechanismATP HydrolysisRhythmic MovementFlagellumProtozoansCell LocomotionWaste RemovalFemale Fallopian TubesFertilization

Dal capitolo 26:

article

Now Playing

26.10 : Mechanism of Ciliary Motion

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.5K Visualizzazioni

article

26.1 : Microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

6.9K Visualizzazioni

article

26.2 : Instabilità dei microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.3K Visualizzazioni

article

26.3 : Formazione di microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

5.3K Visualizzazioni

article

26.4 : Proteine associate ai microtubuli (MAP)

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.9K Visualizzazioni

article

26.5 : Destabilizzazione dei microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.5K Visualizzazioni

article

26.6 : Proteine motorie associate ai microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

7.4K Visualizzazioni

article

26.7 : Il movimento di organelli e vescicole

The Cytoskeleton II: Microtubules and Intermediate Filaments

4.2K Visualizzazioni

article

26.8 : Assemblaggio di strutture complesse di microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.8K Visualizzazioni

article

26.9 : Microtubuli nella motilità cellulare

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.1K Visualizzazioni

article

26.11 : Microtubuli nella segnalazione

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.7K Visualizzazioni

article

26.12 : Farmaci che stabilizzano i microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Visualizzazioni

article

26.13 : Farmaci che destabilizzano i microtubuli

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Visualizzazioni

article

26.14 : La struttura dei filamenti intermedi

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.7K Visualizzazioni

article

26.15 : Tipi di filamenti intermedi

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.5K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati