Anmelden

DNA Distortion and Damage

Cells are regularly exposed to mutagens—factors in the environment that can damage DNA and generate mutations. UV radiation is one of the most common mutagens and is estimated to introduce a significant number of changes in DNA. These include bends or kinks in the structure, which can block DNA replication or transcription. If these errors are not fixed, the damage can cause mutations, which in turn can result in cancer or disease depending on which sequences are disrupted.

Identification and Repair of Damaged Regions

Nucleotide excision repair relies on specific protein complexes to recognize damaged regions of DNA and flag them for removal and repair. In prokaryotes, the process involves three proteins—UvrA, UvrB, and UvrC. The first two proteins work together as a complex, traveling along the DNA strands to detect any physical aberrations.

Once identified, the strands at the damaged location are separated, and endonuclease enzymes such as UvrC cut and excise the affected region. DNA polymerase then fills the gap with new nucleotides, and the enzyme DNA ligase seals the edges between the new and old DNA. Unlike prokaryotes, more than a dozen proteins operate to regulate DNA repair in eukaryotes.

Mutations in NER Pathway

In humans, mutations in the NER pathway can cause diseases such as Xeroderma pigmentosum, which is associated with a 2000-fold increase in the incidence of skin cancer. Individuals suffering from XP are highly sensitive to UV exposure and can develop severe skin burns after just a few minutes of exposure to sunlight. Additionally, XP patients can show signs of premature aging and often develop neurological abnormalities. Without a properly working repair mechanism, DNA damage can accumulate and lead to abnormal cell death or potentially cancerous tumors.

Tags
Nucleotide Excision RepairDNA DamageMutagensUV RadiationMutationsProtein ComplexesUvrAUvrBUvrCEndonuclease EnzymesDNA PolymeraseDNA LigaseNER PathwayXeroderma PigmentosumSkin CancerDNA Repair Mechanism

Aus Kapitel 8:

article

Now Playing

8.11 : Nukleotid Exzisionsreparatur

DNA Replikation und Reparatur

3.3K Ansichten

article

8.1 : Basenpaarung und DNA-Reparatur

DNA Replikation und Reparatur

64.3K Ansichten

article

8.2 : Die DNA-Replikationsgabel

DNA Replikation und Reparatur

13.3K Ansichten

article

8.3 : Nachlaufende Strangsynthese

DNA Replikation und Reparatur

11.7K Ansichten

article

8.4 : Das Replisom

DNA Replikation und Reparatur

5.9K Ansichten

article

8.5 : Korrekturlesen

DNA Replikation und Reparatur

5.8K Ansichten

article

8.6 : Replikation in Prokaryoten

DNA Replikation und Reparatur

22.6K Ansichten

article

8.7 : Replikation in Eukaryoten

DNA Replikation und Reparatur

11.7K Ansichten

article

8.8 : Telomere und Telomerase

DNA Replikation und Reparatur

4.9K Ansichten

article

8.9 : Überblick über die DNA-Reparatur

DNA Replikation und Reparatur

7.3K Ansichten

article

8.10 : Reparatur der Basis-Exzision

DNA Replikation und Reparatur

3.5K Ansichten

article

8.12 : Reparatur von Fehlanpassungen

DNA Replikation und Reparatur

4.6K Ansichten

article

8.13 : Befestigung von Doppelstrangbrüchen

DNA Replikation und Reparatur

3.0K Ansichten

article

8.14 : Homologe Rekombination

DNA Replikation und Reparatur

4.3K Ansichten

article

8.15 : Gen-Konversion

DNA Replikation und Reparatur

2.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten