S'identifier

DNA Distortion and Damage

Cells are regularly exposed to mutagens—factors in the environment that can damage DNA and generate mutations. UV radiation is one of the most common mutagens and is estimated to introduce a significant number of changes in DNA. These include bends or kinks in the structure, which can block DNA replication or transcription. If these errors are not fixed, the damage can cause mutations, which in turn can result in cancer or disease depending on which sequences are disrupted.

Identification and Repair of Damaged Regions

Nucleotide excision repair relies on specific protein complexes to recognize damaged regions of DNA and flag them for removal and repair. In prokaryotes, the process involves three proteins—UvrA, UvrB, and UvrC. The first two proteins work together as a complex, traveling along the DNA strands to detect any physical aberrations.

Once identified, the strands at the damaged location are separated, and endonuclease enzymes such as UvrC cut and excise the affected region. DNA polymerase then fills the gap with new nucleotides, and the enzyme DNA ligase seals the edges between the new and old DNA. Unlike prokaryotes, more than a dozen proteins operate to regulate DNA repair in eukaryotes.

Mutations in NER Pathway

In humans, mutations in the NER pathway can cause diseases such as Xeroderma pigmentosum, which is associated with a 2000-fold increase in the incidence of skin cancer. Individuals suffering from XP are highly sensitive to UV exposure and can develop severe skin burns after just a few minutes of exposure to sunlight. Additionally, XP patients can show signs of premature aging and often develop neurological abnormalities. Without a properly working repair mechanism, DNA damage can accumulate and lead to abnormal cell death or potentially cancerous tumors.

Tags
Nucleotide Excision RepairDNA DamageMutagensUV RadiationMutationsProtein ComplexesUvrAUvrBUvrCEndonuclease EnzymesDNA PolymeraseDNA LigaseNER PathwayXeroderma PigmentosumSkin CancerDNA Repair Mechanism

Du chapitre 8:

article

Now Playing

8.11 : Nucleotide Excision Repair

Réparation et réplication de l'ADN

3.3K Vues

article

8.1 : Appariement des bases et réparation de l'ADN

Réparation et réplication de l'ADN

64.3K Vues

article

8.2 : La fourche de réplication de l'ADN

Réparation et réplication de l'ADN

13.1K Vues

article

8.3 : La synthèse du brin retardé

Réparation et réplication de l'ADN

11.6K Vues

article

8.4 : Le réplisome

Réparation et réplication de l'ADN

5.8K Vues

article

8.5 : Re-lecture

Réparation et réplication de l'ADN

5.8K Vues

article

8.6 : La réplication chez les procaryotes

Réparation et réplication de l'ADN

22.4K Vues

article

8.7 : La réplication chez les eucaryotes

Réparation et réplication de l'ADN

11.6K Vues

article

8.8 : Télomères et télomérase

Réparation et réplication de l'ADN

4.8K Vues

article

8.9 : Vue d'ensemble de la réparation de l'ADN

Réparation et réplication de l'ADN

7.3K Vues

article

8.10 : Réparation par excision de base

Réparation et réplication de l'ADN

3.5K Vues

article

8.12 : Réparation des mésappariements

Réparation et réplication de l'ADN

4.6K Vues

article

8.13 : Réparer les cassures double brin

Réparation et réplication de l'ADN

3.0K Vues

article

8.14 : Recombinaison homologue

Réparation et réplication de l'ADN

4.3K Vues

article

8.15 : Conversion génique

Réparation et réplication de l'ADN

2.1K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.