JoVE Logo

Anmelden

The double-stranded structure of DNA has two major advantages. First, it serves as a safe repository of genetic information where one strand serves as the back-up in case the other strand is damaged. Second, the double-helical structure can be wrapped around proteins called histones to form nucleosomes, which can then be tightly wound to form chromosomes. This way, DNA chains up to 2 inches long can be contained within microscopic structures in a cell. A double-stranded break not only damages both copies of genetic information but also disrupts the continuity of DNA, making the chromosome fragile.

In a cell, there are an estimated ten double-strand breaks (DSBs) per day. The primary source of damage is metabolic by-products such as Reactive Oxygen Species and environmental factors such as ionizing radiations. Although less common, malfunctioning nuclear enzymes can also cause DSBs. Failure of enzymes like type II topoisomerases, which cut both strands of DNA and rejoin them while disentangling chromosomes, can inadvertently result in DSBs. Mechanical stress on the DNA duplex can also lead to DSBs. In prokaryotes, prolonged desiccation strains DNA, causing DSBs.

Of the two mechanisms for DNA repair, homologous recombination depends on a sister chromatid being nearby, which happens during the S and G2 phases. Due to this restriction, in the absence of a homology donor, cells have to resort to Nonhomologous end joining (NHEJ), even though it is much less accurate. It has been hypothesized that the reason higher eukaryotes can afford to preferentially utilize NHEJ for DSB repairs is that they have abundant non-coding DNA, which permits nucleotide substitutions, deletions or additions without grievous consequences.

Tags

Double strand BreaksDNA RepairGenome StabilityCellular MechanismsRepair PathwaysHomologous RecombinationNon homologous End JoiningGenetic IntegrityRepair ProteinsChromosomal Damage

Aus Kapitel 8:

article

Now Playing

8.13 : Fixing Double-strand Breaks

DNA Replikation und Reparatur

11.9K Ansichten

article

8.1 : Basenpaarung und DNA-Reparatur

DNA Replikation und Reparatur

64.4K Ansichten

article

8.2 : Die DNA-Replikationsgabel

DNA Replikation und Reparatur

14.4K Ansichten

article

8.3 : Nachlaufende Strangsynthese

DNA Replikation und Reparatur

12.7K Ansichten

article

8.4 : Das Replisom

DNA Replikation und Reparatur

6.0K Ansichten

article

8.5 : Korrekturlesen

DNA Replikation und Reparatur

6.0K Ansichten

article

8.6 : Replikation in Prokaryoten

DNA Replikation und Reparatur

23.8K Ansichten

article

8.7 : Replikation in Eukaryoten

DNA Replikation und Reparatur

12.8K Ansichten

article

8.8 : Telomere und Telomerase

DNA Replikation und Reparatur

5.0K Ansichten

article

8.9 : Überblick über die DNA-Reparatur

DNA Replikation und Reparatur

7.4K Ansichten

article

8.10 : Reparatur der Basis-Exzision

DNA Replikation und Reparatur

3.5K Ansichten

article

8.11 : Nukleotid Exzisionsreparatur

DNA Replikation und Reparatur

3.4K Ansichten

article

8.12 : Reparatur von Fehlanpassungen

DNA Replikation und Reparatur

4.6K Ansichten

article

8.14 : Homologe Rekombination

DNA Replikation und Reparatur

4.3K Ansichten

article

8.15 : Gen-Konversion

DNA Replikation und Reparatur

2.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten