Anmelden

The nitrosation reaction is one of the methods of preparing 1,2-diketones. The enol tautomer of the starting ketone reacts with sodium nitrite in hydrochloric acid, generating the 1,2-diketone after hydrolysis.

Figure1

Figure 1: Keto–enol tautomerization

As depicted in Figure 2, when treated with hydrochloric acid, sodium nitrite forms an oxonium ion. The expulsion of a water molecule from the oxonium ion produces a nitrosonium ion.

Figure2

Figure 2: The chemical reaction of the formation of the nitrosonium ion

The electrophilic nitrosonium ion is attacked by the enol tautomer to give an unstable nitroso compound (Figure 3).

Figure3

Figure 3: The chemical reaction of the formation of nitroso compounds

As shown in Figure 4, the tautomerization of the nitroso compound involves the transfer of the hydrogen atom from the carbon to the oxygen of the nitroso group, thereby forming a stable oxime. The stability of the oxime is due to the hydrogen bond between the oxime’s hydroxyl group and the ketone’s carbonyl oxygen. Hydrolysis of the oxime results in the formation of the 1,2-diketone as the final product.

Figure4

Figure 4: The formation of a diketone from a nitroso compound via an oxime intermediate

The nitrosation reaction is regioselective, where the second carbonyl group is preferentially introduced at the more-substituted carbon.

Tags
NitrosationEnols12 diketonesTautomerizationSodium NitriteHydrochloric AcidOxonium IonNitrosonium IonElectrophilic AttackNitroso CompoundOxime FormationHydrolysisRegioselectivity

Aus Kapitel 15:

article

Now Playing

15.13 : Nitrosierung von Enolen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.3K Ansichten

article

15.1 : Reaktivität von Enolen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.8K Ansichten

article

15.2 : Reaktivität von Enolat Ionen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.3K Ansichten

article

15.3 : Arten von Enolen und Enolaten

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.3K Ansichten

article

15.4 : Konventionen des Enolat Mechanismus

α-Kohlenstoffchemie: Enole, Enolate und Enamine

1.9K Ansichten

article

15.5 : Regioselektive Bildung von Enolaten

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.4K Ansichten

article

15.6 : Stereochemische Effekte der Enolisierung

α-Kohlenstoffchemie: Enole, Enolate und Enamine

1.9K Ansichten

article

15.7 : Säurekatalysierte α-Halogenierung von Aldehyden und Ketonen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.4K Ansichten

article

15.8 : Basenkatalysierte α-Halogenierung von Aldehyden und Ketonen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.2K Ansichten

article

15.9 : Mehrfache Halogenierung von Methylketonen: Haloform-Reaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

1.8K Ansichten

article

15.10 : α-Halogenierung von Carbonsäurederivaten: Überblick

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.1K Ansichten

article

15.11 : α-Bromierung von Carbonsäuren: Hell-Volhard-Zelinsky-Reaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.9K Ansichten

article

15.12 : Reaktionen von α-Halocarbonyl-Verbindungen: Nukleophile Substitution

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.1K Ansichten

article

15.14 : Bildung von C-C-Bindungen: Überblick über die Aldolkondensation

α-Kohlenstoffchemie: Enole, Enolate und Enamine

13.2K Ansichten

article

15.15 : Basenkatalysierte Aldoladditionsreaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.9K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten