The goodness-of-fit test is a type of hypothesis test which determines whether the data "fits" a particular distribution. For example, one may suspect that some anonymous data may fit a binomial distribution. A chi-square test (meaning the distribution for the hypothesis test is chi-square) can be used to determine if there is a fit. The null and alternative hypotheses may be written in sentences or stated as equations or inequalities. The test statistic for a goodness-of-fit test is given as follows:

Equation1

where:

O = observed values (data), and E = expected values (from theory)

The observed values are the data values, and the expected values are the values you would expect to get if the null hypothesis were true. It is important to note that each cell’s expected needs to be at least five to use this test. The number of degrees of freedom is Equation2, where k = the number of different data cells or categories.

The goodness-of-fit test is almost always right-tailed. If the observed and the corresponding expected values are not close, the test statistic will be significant and located at the extreme right tail of the chi-square curve.

This text is adapted from Openstax, Introductory Statistics, 11.2 Goodness-of-Fit Test.

Tags
Goodness of fit TestHypothesis TestChi square TestNull HypothesisAlternative HypothesisObserved ValuesExpected ValuesTest StatisticDegrees Of FreedomRight tailed TestData DistributionStatistical Significance

Aus Kapitel 8:

article

Now Playing

8.8 : Goodness-of-Fit Test

Distributions

3.2K Ansichten

article

8.1 : Verteilungen zur Schätzung des Parameters "Population"

Distributions

3.8K Ansichten

article

8.2 : Freiheitsgrade

Distributions

2.8K Ansichten

article

8.3 : Verteilung der Studenten t

Distributions

5.5K Ansichten

article

8.4 : Auswahl zwischen z- und t-Verteilung

Distributions

2.5K Ansichten

article

8.5 : Chi-Quadrat-Verteilung

Distributions

3.3K Ansichten

article

8.6 : Kritische Werte für das Chi-Quadrat finden

Distributions

2.7K Ansichten

article

8.7 : Schätzen der Standardabweichung der Grundgesamtheit

Distributions

2.9K Ansichten

article

8.9 : Erwartete Häufigkeiten bei Tests auf Güte der Anpassung

Distributions

2.4K Ansichten

article

8.10 : Kontingenztafel

Distributions

2.3K Ansichten

article

8.11 : Einführung in die Unabhängigkeitsprüfung

Distributions

2.0K Ansichten

article

8.12 : Hypothesentest für den Test der Unabhängigkeit

Distributions

3.3K Ansichten

article

8.13 : Bestimmung der zu erwartenden Häufigkeit

Distributions

2.0K Ansichten

article

8.14 : Test auf Homogenität

Distributions

1.9K Ansichten

article

8.15 : F Verteilung

Distributions

3.5K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten