S'identifier

The goodness-of-fit test is a type of hypothesis test which determines whether the data "fits" a particular distribution. For example, one may suspect that some anonymous data may fit a binomial distribution. A chi-square test (meaning the distribution for the hypothesis test is chi-square) can be used to determine if there is a fit. The null and alternative hypotheses may be written in sentences or stated as equations or inequalities. The test statistic for a goodness-of-fit test is given as follows:

Equation1

where:

O = observed values (data), and E = expected values (from theory)

The observed values are the data values, and the expected values are the values you would expect to get if the null hypothesis were true. It is important to note that each cell’s expected needs to be at least five to use this test. The number of degrees of freedom is Equation2, where k = the number of different data cells or categories.

The goodness-of-fit test is almost always right-tailed. If the observed and the corresponding expected values are not close, the test statistic will be significant and located at the extreme right tail of the chi-square curve.

This text is adapted from Openstax, Introductory Statistics, 11.2 Goodness-of-Fit Test.

Tags
Goodness of fit TestHypothesis TestChi square TestNull HypothesisAlternative HypothesisObserved ValuesExpected ValuesTest StatisticDegrees Of FreedomRight tailed TestData DistributionStatistical Significance

Du chapitre 8:

article

Now Playing

8.8 : Goodness-of-Fit Test

Distributions

3.2K Vues

article

8.1 : Distributions pour estimer le paramètre de population

Distributions

3.9K Vues

article

8.2 : Degrés de liberté

Distributions

2.9K Vues

article

8.3 : Distribution des étudiants

Distributions

5.7K Vues

article

8.4 : Choisir entre la distribution z et t

Distributions

2.7K Vues

article

8.5 : Distribution du khi-deux

Distributions

3.4K Vues

article

8.6 : Trouver les valeurs critiques du khi-deux

Distributions

2.8K Vues

article

8.7 : Estimation de l’écart-type de la population

Distributions

2.9K Vues

article

8.9 : Fréquences attendues dans les essais de qualité de l’ajustement

Distributions

2.5K Vues

article

8.10 : Tableau de contingence

Distributions

2.4K Vues

article

8.11 : Introduction au test d’indépendance

Distributions

2.0K Vues

article

8.12 : Test d’hypothèse pour test d’indépendance

Distributions

3.4K Vues

article

8.13 : Détermination de la fréquence prévue

Distributions

2.1K Vues

article

8.14 : Test d’homogénéité

Distributions

1.9K Vues

article

8.15 : F Répartition

Distributions

3.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.