Anmelden

The internal energy of a thermodynamic system is the sum of the kinetic and potential energies of all the molecules or entities in the system. The kinetic energy of an individual molecule includes contributions due to its rotation and vibration, as well as its translational energy. The potential energy is associated only with the interactions between one molecule and the other molecules of the system. Neither the system's location nor its motion is of any consequence as far as the internal energy is concerned.

Consider an ideal monatomic gas. Here, each molecule is a single atom. Consequently, there is no rotational or vibrational kinetic energy. Furthermore, there are no interatomic interactions, so potential energy is assumed to be zero. The internal energy is, therefore, a result of translational kinetic energy only. Therefore, the internal energy of ideal gas is just the number of molecules multiplied by the average kinetic energy per molecule. Thus, for n moles of an ideal monatomic gas, the internal energy is given by

Equation1

It can be seen that the internal energy of a given quantity of an ideal monatomic gas depends on the temperature and is independent of the pressure and volume of the gas. For other systems, the internal energy cannot be expressed so simply. However, an increase in internal energy can often be associated with an increase in temperature.

In general, when a quantity of heat Q is added to a system, and the system does no work during the process, the internal energy increases by an amount equal to Q. When a system does work W by expanding against its surroundings, and no heat is added during the process, energy leaves the system and the internal energy decreases. While Q and W depend on the path, the change in internal energy of a system during any thermodynamic process depends only on the initial and final states, not on the path leading from one to the other.

Tags
Internal EnergyThermodynamic SystemKinetic EnergyPotential EnergyIdeal Monatomic GasTranslational Kinetic EnergyTemperaturePressureVolumeHeat QWork WThermodynamic Process

Aus Kapitel 20:

article

Now Playing

20.5 : Internal Energy

The First Law of Thermodynamics

4.0K Ansichten

article

20.1 : Thermodynamische Systeme

The First Law of Thermodynamics

4.6K Ansichten

article

20.2 : Geleistete Arbeit während der Lautstärkeänderung

The First Law of Thermodynamics

3.4K Ansichten

article

20.3 : Pfad zwischen thermodynamischen Zuständen

The First Law of Thermodynamics

2.8K Ansichten

article

20.4 : Wärme und freie Ausdehnung

The First Law of Thermodynamics

1.4K Ansichten

article

20.6 : Erster Hauptsatz der Thermodynamik

The First Law of Thermodynamics

3.7K Ansichten

article

20.7 : Erster Hauptsatz der Thermodynamik: Problemlösung

The First Law of Thermodynamics

2.1K Ansichten

article

20.8 : Zyklische Prozesse und isolierte Systeme

The First Law of Thermodynamics

2.5K Ansichten

article

20.9 : Isotherme Prozesse

The First Law of Thermodynamics

3.3K Ansichten

article

20.10 : Isochore und isobare Prozesse

The First Law of Thermodynamics

3.0K Ansichten

article

20.11 : Wärmekapazitäten eines idealen Gases I

The First Law of Thermodynamics

2.4K Ansichten

article

20.12 : Wärmekapazitäten eines idealen Gases II

The First Law of Thermodynamics

2.3K Ansichten

article

20.13 : Wärmekapazitäten eines idealen Gases III

The First Law of Thermodynamics

2.1K Ansichten

article

20.14 : Adiabatische Prozesse für ein ideales Gas

The First Law of Thermodynamics

2.8K Ansichten

article

20.15 : Druck und Volumen in einem adiabatischen Prozess

The First Law of Thermodynamics

2.6K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten