Accedi

The internal energy of a thermodynamic system is the sum of the kinetic and potential energies of all the molecules or entities in the system. The kinetic energy of an individual molecule includes contributions due to its rotation and vibration, as well as its translational energy. The potential energy is associated only with the interactions between one molecule and the other molecules of the system. Neither the system's location nor its motion is of any consequence as far as the internal energy is concerned.

Consider an ideal monatomic gas. Here, each molecule is a single atom. Consequently, there is no rotational or vibrational kinetic energy. Furthermore, there are no interatomic interactions, so potential energy is assumed to be zero. The internal energy is, therefore, a result of translational kinetic energy only. Therefore, the internal energy of ideal gas is just the number of molecules multiplied by the average kinetic energy per molecule. Thus, for n moles of an ideal monatomic gas, the internal energy is given by

Equation1

It can be seen that the internal energy of a given quantity of an ideal monatomic gas depends on the temperature and is independent of the pressure and volume of the gas. For other systems, the internal energy cannot be expressed so simply. However, an increase in internal energy can often be associated with an increase in temperature.

In general, when a quantity of heat Q is added to a system, and the system does no work during the process, the internal energy increases by an amount equal to Q. When a system does work W by expanding against its surroundings, and no heat is added during the process, energy leaves the system and the internal energy decreases. While Q and W depend on the path, the change in internal energy of a system during any thermodynamic process depends only on the initial and final states, not on the path leading from one to the other.

Tags
Internal EnergyThermodynamic SystemKinetic EnergyPotential EnergyIdeal Monatomic GasTranslational Kinetic EnergyTemperaturePressureVolumeHeat QWork WThermodynamic Process

Dal capitolo 20:

article

Now Playing

20.5 : Internal Energy

The First Law of Thermodynamics

4.0K Visualizzazioni

article

20.1 : Sistemi termodinamici

The First Law of Thermodynamics

4.6K Visualizzazioni

article

20.2 : Lavoro svolto durante la modifica del volume

The First Law of Thermodynamics

3.4K Visualizzazioni

article

20.3 : Percorso tra gli stati della termodinamica

The First Law of Thermodynamics

2.8K Visualizzazioni

article

20.4 : Calore ed espansione libera

The First Law of Thermodynamics

1.4K Visualizzazioni

article

20.6 : Primo principio della termodinamica

The First Law of Thermodynamics

3.7K Visualizzazioni

article

20.7 : Primo principio della termodinamica: risoluzione dei problemi

The First Law of Thermodynamics

2.1K Visualizzazioni

article

20.8 : Processi ciclici e sistemi isolati

The First Law of Thermodynamics

2.5K Visualizzazioni

article

20.9 : Processi isotermici

The First Law of Thermodynamics

3.3K Visualizzazioni

article

20.10 : Processi isocorici e isobarici

The First Law of Thermodynamics

3.0K Visualizzazioni

article

20.11 : Capacità termiche di un gas ideale I

The First Law of Thermodynamics

2.4K Visualizzazioni

article

20.12 : Capacità termiche di un gas ideale II

The First Law of Thermodynamics

2.3K Visualizzazioni

article

20.13 : Capacità termiche di un gas ideale III

The First Law of Thermodynamics

2.1K Visualizzazioni

article

20.14 : Processi adiabatici per un gas ideale

The First Law of Thermodynamics

2.8K Visualizzazioni

article

20.15 : Pressione e volume in un processo adiabatico

The First Law of Thermodynamics

2.6K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati