Anmelden

Consider two charges of equal magnitude but opposite signs. If they cannot be separated by an external electric field, the system is called a permanent dipole. For example, the water molecule is a dipole, making it a good solvent.

Theoretically, studying electric dipoles leads to understanding why the resultant electric forces around us are weak. Since electric forces are strong, remnant net charges are rare. Hence, the interaction between dipoles helps us understand electrical interactions in ordinary objects around us.

When a permanent dipole is placed in a uniform electric field, it experiences no net force. However, it orients itself along the field so that the positive charge end points toward it. This interaction between the dipole and the electric field can be scrutinized by calculating the net torque it experiences.

Simple vector algebra leads to an interesting observation. The net torque depends on a cross-product of a new vector, called the electric dipole moment, and the electric field. The dipole moment is proportional to the magnitude of each charge and the separation between them.

If a molecule has a large separation between its positive and negative charge centers, it has a higher dipole moment. If the charge separated is itself high, its dipole moment is larger.

The dipole moment points from the negative charge to the positive charge. In the absence of any other torque, the dipole rotates and aligns with the field. The observation implies that the potential energy is associated with the orientation of the dipole with respect to the external electric field.

Tags
Electric DipoleDipole MomentPermanent DipoleElectric FieldNet TorqueCharge SeparationElectrical InteractionsVector AlgebraPositive ChargeNegative ChargePotential EnergySolvent Properties

Aus Kapitel 22:

article

Now Playing

22.15 : Electric Dipoles and Dipole Moment

Electric Charges and Fields

4.9K Ansichten

article

22.1 : Elektrische Ladungen

Electric Charges and Fields

17.4K Ansichten

article

22.2 : Quellen und Eigenschaften elektrischer Ladung

Electric Charges and Fields

9.5K Ansichten

article

22.3 : Leiter und Isolatoren

Electric Charges and Fields

7.9K Ansichten

article

22.4 : Laden von Leitern durch Induktion

Electric Charges and Fields

7.4K Ansichten

article

22.5 : Coulombsches Gesetz

Electric Charges and Fields

8.6K Ansichten

article

22.6 : Das Coulombsche Gesetz und das Prinzip der Überlagerung

Electric Charges and Fields

8.3K Ansichten

article

22.7 : Vergleich zwischen elektrischen und Gravitationskräften

Electric Charges and Fields

2.4K Ansichten

article

22.8 : Elektrisches Feld

Electric Charges and Fields

10.1K Ansichten

article

22.9 : Elektrisches Feld aus zwei gleichen und entgegengesetzten Ladungen

Electric Charges and Fields

5.6K Ansichten

article

22.10 : Kontinuierliche Ladungsverteilungen

Electric Charges and Fields

6.6K Ansichten

article

22.11 : Elektrisches Feld einer kontinuierlichen Linienladung

Electric Charges and Fields

1.4K Ansichten

article

22.12 : Elektrisches Feld einer geladenen Scheibe

Electric Charges and Fields

1.9K Ansichten

article

22.13 : Elektrische Feldlinien

Electric Charges and Fields

7.1K Ansichten

article

22.14 : Eigenschaften elektrischer Feldlinien

Electric Charges and Fields

7.4K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten