S'identifier

Consider two charges of equal magnitude but opposite signs. If they cannot be separated by an external electric field, the system is called a permanent dipole. For example, the water molecule is a dipole, making it a good solvent.

Theoretically, studying electric dipoles leads to understanding why the resultant electric forces around us are weak. Since electric forces are strong, remnant net charges are rare. Hence, the interaction between dipoles helps us understand electrical interactions in ordinary objects around us.

When a permanent dipole is placed in a uniform electric field, it experiences no net force. However, it orients itself along the field so that the positive charge end points toward it. This interaction between the dipole and the electric field can be scrutinized by calculating the net torque it experiences.

Simple vector algebra leads to an interesting observation. The net torque depends on a cross-product of a new vector, called the electric dipole moment, and the electric field. The dipole moment is proportional to the magnitude of each charge and the separation between them.

If a molecule has a large separation between its positive and negative charge centers, it has a higher dipole moment. If the charge separated is itself high, its dipole moment is larger.

The dipole moment points from the negative charge to the positive charge. In the absence of any other torque, the dipole rotates and aligns with the field. The observation implies that the potential energy is associated with the orientation of the dipole with respect to the external electric field.

Tags
Electric DipoleDipole MomentPermanent DipoleElectric FieldNet TorqueCharge SeparationElectrical InteractionsVector AlgebraPositive ChargeNegative ChargePotential EnergySolvent Properties

Du chapitre 22:

article

Now Playing

22.15 : Electric Dipoles and Dipole Moment

Electric Charges and Fields

4.9K Vues

article

22.1 : Charges électriques

Electric Charges and Fields

17.5K Vues

article

22.2 : Sources et propriétés de la charge électrique

Electric Charges and Fields

9.5K Vues

article

22.3 : Conducteurs et isolants

Electric Charges and Fields

7.9K Vues

article

22.4 : Charge des conducteurs par induction

Electric Charges and Fields

7.4K Vues

article

22.5 : Loi de Coulomb

Electric Charges and Fields

8.6K Vues

article

22.6 : La loi de Coulomb et le principe de superposition

Electric Charges and Fields

8.3K Vues

article

22.7 : Comparaison entre les forces électriques et gravitationnelles

Electric Charges and Fields

2.4K Vues

article

22.8 : Champ électrique

Electric Charges and Fields

10.1K Vues

article

22.9 : Champ électrique de deux charges égales et opposées

Electric Charges and Fields

5.6K Vues

article

22.10 : Distributions de charges continues

Electric Charges and Fields

6.6K Vues

article

22.11 : Champ électrique d’une charge de ligne continue

Electric Charges and Fields

1.4K Vues

article

22.12 : Champ électrique d’un disque chargé

Electric Charges and Fields

1.9K Vues

article

22.13 : Lignes de champ électrique

Electric Charges and Fields

7.1K Vues

article

22.14 : Propriétés des lignes de champ électrique

Electric Charges and Fields

7.4K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.