Anmelden

A permanent electric dipole orients itself along an external electric field. This rotation can be quantified by defining the potential energy because the external torque does work in rotating it. Then, the potential energy is minimum at the parallel configuration and maximum at the antiparallel configuration. While the former is a stable equilibrium, the latter is an unstable equilibrium.

Since the absolute value of potential energy holds no physical meaning, its zero value can be chosen as per convenience. It is chosen to be in the configuration when the electric dipole is perpendicular to the field.

The polarity of molecules determines whether they are a good solvent. For example, water is a good solvent for common salt because it attracts the positive and negative ions toward the opposite charge centers inside it, thereby breaking apart the sodium chloride crystals.

Not all molecules, however, possess a permanent electric dipole. If the positive and negative charge centers are located at the same point, there is no separation. For example, the molecular structure of carbon dioxide is symmetric in the charge distribution. Other organic compounds, such as methane, are also non-polar.

However, in the presence of an external electric field, the charge centers are separated because the negative charge center shifts toward the electric field, while the positive charge center shifts away from the field. Since this happens for all molecules, the external field induces a polarity across the substance.

It is interesting to note that the induced dipole moment somewhat nullifies the electric field. This scenario arises near the dipole, where its electric field is opposite to the external electric field. This mechanism reduces the electric field inside dielectrics.

Tags
Induced Electric DipolesPermanent Electric DipoleExternal Electric FieldPotential EnergyStable EquilibriumUnstable EquilibriumPolarity Of MoleculesGood SolventCharge CentersSodium ChlorideSymmetric Charge DistributionNon polar MoleculesInduced Dipole MomentElectric Field ReductionDielectrics

Aus Kapitel 22:

article

Now Playing

22.16 : Induced Electric Dipoles

Electric Charges and Fields

4.1K Ansichten

article

22.1 : Elektrische Ladungen

Electric Charges and Fields

17.5K Ansichten

article

22.2 : Quellen und Eigenschaften elektrischer Ladung

Electric Charges and Fields

9.5K Ansichten

article

22.3 : Leiter und Isolatoren

Electric Charges and Fields

7.9K Ansichten

article

22.4 : Laden von Leitern durch Induktion

Electric Charges and Fields

7.4K Ansichten

article

22.5 : Coulombsches Gesetz

Electric Charges and Fields

8.6K Ansichten

article

22.6 : Das Coulombsche Gesetz und das Prinzip der Überlagerung

Electric Charges and Fields

8.3K Ansichten

article

22.7 : Vergleich zwischen elektrischen und Gravitationskräften

Electric Charges and Fields

2.4K Ansichten

article

22.8 : Elektrisches Feld

Electric Charges and Fields

10.1K Ansichten

article

22.9 : Elektrisches Feld aus zwei gleichen und entgegengesetzten Ladungen

Electric Charges and Fields

5.6K Ansichten

article

22.10 : Kontinuierliche Ladungsverteilungen

Electric Charges and Fields

6.6K Ansichten

article

22.11 : Elektrisches Feld einer kontinuierlichen Linienladung

Electric Charges and Fields

1.4K Ansichten

article

22.12 : Elektrisches Feld einer geladenen Scheibe

Electric Charges and Fields

1.9K Ansichten

article

22.13 : Elektrische Feldlinien

Electric Charges and Fields

7.1K Ansichten

article

22.14 : Eigenschaften elektrischer Feldlinien

Electric Charges and Fields

7.4K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten