JoVE Logo

Войдите в систему

22.16 : Induced Electric Dipoles

A permanent electric dipole orients itself along an external electric field. This rotation can be quantified by defining the potential energy because the external torque does work in rotating it. Then, the potential energy is minimum at the parallel configuration and maximum at the antiparallel configuration. While the former is a stable equilibrium, the latter is an unstable equilibrium.

Since the absolute value of potential energy holds no physical meaning, its zero value can be chosen as per convenience. It is chosen to be in the configuration when the electric dipole is perpendicular to the field.

The polarity of molecules determines whether they are a good solvent. For example, water is a good solvent for common salt because it attracts the positive and negative ions toward the opposite charge centers inside it, thereby breaking apart the sodium chloride crystals.

Not all molecules, however, possess a permanent electric dipole. If the positive and negative charge centers are located at the same point, there is no separation. For example, the molecular structure of carbon dioxide is symmetric in the charge distribution. Other organic compounds, such as methane, are also non-polar.

However, in the presence of an external electric field, the charge centers are separated because the negative charge center shifts toward the electric field, while the positive charge center shifts away from the field. Since this happens for all molecules, the external field induces a polarity across the substance.

It is interesting to note that the induced dipole moment somewhat nullifies the electric field. This scenario arises near the dipole, where its electric field is opposite to the external electric field. This mechanism reduces the electric field inside dielectrics.

Теги

Induced Electric DipolesPermanent Electric DipoleExternal Electric FieldPotential EnergyStable EquilibriumUnstable EquilibriumPolarity Of MoleculesGood SolventCharge CentersSodium ChlorideSymmetric Charge DistributionNon polar MoleculesInduced Dipole MomentElectric Field ReductionDielectrics

Из главы 22:

article

Now Playing

22.16 : Induced Electric Dipoles

Electric Charges and Fields

4.2K Просмотры

article

22.1 : Электрические заряды

Electric Charges and Fields

18.4K Просмотры

article

22.2 : Источники и свойства электрического заряда

Electric Charges and Fields

9.9K Просмотры

article

22.3 : Проводники и изоляторы

Electric Charges and Fields

8.4K Просмотры

article

22.4 : Зарядка проводников индукционным способом

Electric Charges and Fields

7.6K Просмотры

article

22.5 : Закон Кулона

Electric Charges and Fields

8.9K Просмотры

article

22.6 : Закон Кулона и принцип суперпозиции

Electric Charges and Fields

8.7K Просмотры

article

22.7 : Сравнение электрических и гравитационных сил

Electric Charges and Fields

2.6K Просмотры

article

22.8 : Электрическое поле

Electric Charges and Fields

10.5K Просмотры

article

22.9 : Электрическое поле двух равных и противоположных зарядов

Electric Charges and Fields

5.8K Просмотры

article

22.10 : Непрерывное распределение заряда

Electric Charges and Fields

6.8K Просмотры

article

22.11 : Электрическое поле непрерывного линейного заряда

Electric Charges and Fields

1.5K Просмотры

article

22.12 : Электрическое поле заряженного диска

Electric Charges and Fields

2.1K Просмотры

article

22.13 : Силовые электрические линии

Electric Charges and Fields

7.4K Просмотры

article

22.14 : Свойства линий электрического поля

Electric Charges and Fields

7.6K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены