Anmelden

Consider a ring of radius R with a uniform charge density λ. What will the electric potential be at point M, which is located on the axis of the ring at a distance x from the center of the ring?

The ring is divided into infinitesimal small arcs such that point M is equidistant from all the arcs. Here, the cylindrical coordinate system is used to calculate the electric potential at point M. A general element of the arc between anglesθand θ + is of the length Rdθand has a charge of λRdθ.

Equation1

The distance between this element of the ring and the point M is

Equation1

The potential at point M due to the charge on the whole ring is

Equation2

Integrating the above equation over the limits gives,

Equation3

Here, 2πRλ accounts for the whole charge on the ring; therefore, the above equation can be written as

Equation4

This result is expected because point M is equidistant from all the infinitesimal ring elements, and the total potential will be similar to if the total charge were positioned at a common distance from point M.

Tags

Electric PotentialRing ChargeUniform Charge DensityPoint MCylindrical Coordinate SystemInfinitesimal ArcsArc LengthCharge ElementPotential IntegrationEquidistant PointTotal PotentialElectrostatics

Aus Kapitel 24:

article

Now Playing

24.6 : Calculations of Electric Potential I

Electric Potential

1.8K Ansichten

article

24.1 : Elektrische potentielle Energie

Electric Potential

5.2K Ansichten

article

24.2 : Potentielle elektrische Energie in einem gleichmäßigen elektrischen Feld

Electric Potential

4.3K Ansichten

article

24.3 : Potentielle elektrische Energie von Zweipunktladungen

Electric Potential

4.2K Ansichten

article

24.4 : Elektrisches Potential und Potentialdifferenz

Electric Potential

4.1K Ansichten

article

24.5 : Auffinden des elektrischen Potentials aus dem elektrischen Feld

Electric Potential

3.8K Ansichten

article

24.7 : Berechnungen des elektrischen Potentials II

Electric Potential

1.5K Ansichten

article

24.8 : Potentialäquipotentialflächen und Feldlinien

Electric Potential

3.5K Ansichten

article

24.9 : Potentialausgleichsflächen und Leiter

Electric Potential

3.2K Ansichten

article

24.10 : Bestimmung des elektrischen Feldes aus dem elektrischen Potential

Electric Potential

4.3K Ansichten

article

24.11 : Poisson- und Laplace-Gleichung

Electric Potential

2.4K Ansichten

article

24.12 : Van-de-Graaff-Generator

Electric Potential

1.6K Ansichten

article

24.13 : Energie, die mit einer Ladungsverteilung verbunden ist

Electric Potential

1.4K Ansichten

article

24.14 : Elektrostatische Randbedingungen

Electric Potential

356 Ansichten

article

24.15 : Zweiter Einzigartigkeitssatz

Electric Potential

918 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten