Anmelden

Voltage and current measurements using a standard voltmeter and ammeter alter the circuit being measured either by drawing or resisting the current flow, which introduces uncertainties in the measurements. Null measurements balance the voltages so that no current flows through the measuring device and, therefore, no alterations occur in the measured circuit.

Suppose the emf of a battery needs to be measured. If the battery is directly connected to a standard voltmeter, the measured quantity is the battery's terminal voltage. To accurately measure the emf, the internal resistance should be known, or the current could be made zero. However, standard voltmeters require current to operate; thus, an alternate technique is required.

A potentiometer is a null measurement device used for measuring unknown potentials more accurately than voltmeters. It consists of a voltage source connected to a long, uniform resistive wire of constantan or magnum. The battery maintains a constant current flow and a consistent potential gradient across the wire length. A rheostat is used to regulate the current across the wire. The unknown emf source is connected in series with a galvanometer and a jockey. A variable potential drop can be obtained across the wire by moving the contact to different points. In a balanced condition, the galvanometer shows zero deflection. This length is noted, and it corresponds to Rx. Next, the unknown source is replaced by a standard emf source, and the contact point is again adjusted to obtain zero deflection. This balanced length corresponds to Rs.

In both cases, as no current passes through the galvanometer, the current through the wire is the same. The ratio of the two relations gives the expression of unknown emf in terms of the resistances of the wire segments.

Equation1

With the measured resistance values, the unknown emf can be calculated. The potentiometer can also be used to measure the internal resistance of a cell or to compare the emfs of two voltage sources.

Tags
PotentiometerVoltage MeasurementCurrent MeasurementEmf MeasurementNull MeasurementInternal ResistanceResistive WireGalvanometerRheostatVoltage SourceVariable Potential DropUnknown EmfBalanced ConditionResistance CalculationElectrical Measurements

Aus Kapitel 27:

article

Now Playing

27.12 : Potentiometer

Direct-Current Circuits

428 Ansichten

article

27.1 : Elektromotorische Kraft

Direct-Current Circuits

3.9K Ansichten

article

27.2 : Widerstände in Reihe

Direct-Current Circuits

4.4K Ansichten

article

27.3 : Parallele Widerstände

Direct-Current Circuits

4.2K Ansichten

article

27.4 : Kombination von Widerständen

Direct-Current Circuits

2.3K Ansichten

article

27.5 : Kirchhoffs Regeln

Direct-Current Circuits

4.2K Ansichten

article

27.6 : Kirchoff-Regeln: Anwendung

Direct-Current Circuits

1.3K Ansichten

article

27.7 : DC-Batterie

Direct-Current Circuits

686 Ansichten

article

27.8 : Mehrere Spannungsquellen

Direct-Current Circuits

998 Ansichten

article

27.9 : Galvanometer

Direct-Current Circuits

2.0K Ansichten

article

27.10 : Amperemeter

Direct-Current Circuits

1.9K Ansichten

article

27.11 : Voltmeter

Direct-Current Circuits

1.1K Ansichten

article

27.13 : Wheatstone-Brücke

Direct-Current Circuits

379 Ansichten

article

27.14 : Verlustleistung in einem Stromkreis: Problemlösung

Direct-Current Circuits

939 Ansichten

article

27.15 : RC-Schaltungen: Aufladen eines Kondensators

Direct-Current Circuits

3.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten