Supercritical fluid chromatography (SFC) provides a beneficial substitute for gas chromatography (GC) and liquid chromatography (LC) for certain samples because it merges the top attributes of both techniques. SFC allows the separation and analysis of compounds that GC or LC does not easily manage. These compounds are traditionally nonvolatile or thermally unstable, making GC unsuitable and lacking functional groups required for HPLC analysis.

SFC utilizes a supercritical fluid mobile phase, often CO2, which has properties between those of a gas and a liquid. The supercritical fluid's viscosity is the same as that of gases, while the density is closer to a liquid, and the diffusion coefficient is intermediate between gas and liquid. The low critical temperature and critical pressure of CO2 can be easily achieved and maintained.

SFC provides better analysis time and resolution than conventional HPLC. It is suitable for analyzing nonpolar organics and can also analyze polar solutes, including an organic modifier like methanol.

SFC shares similar instrumentation with GC and HPLC, with the addition of a pressure restrictor that maintains the critical pressure. Both packed and open tubular columns can be used as stationary phases in SFC. In SFC, packed columns offer a greater number of theoretical plates and can handle bigger sample volumes compared to open tubular columns. The low viscosity of supercritical media makes these columns longer than those found in LC. Open tubular columns resemble fused-silica wall-coated (FSWC) columns, while packed columns are commonly made of stainless steel. Initially, SFC utilized only polar stationary phases, but the growing use of modifiers has expanded the range of applicable phases. This makes it possible to modify retention mechanisms by adjusting the stationary and mobile phase compositions, integrating numerous HPLC stationary phases into SFC. SFC uses various detectors and allows for separating large molecules at relatively lower temperatures, resulting in increased efficiency and simplified coupling with MS or FT-IR.

Applications of SFC include the analysis of polymers, fossil fuels, waxes, drugs, and food products.

Aus Kapitel 11:

article

Now Playing

11.23 : Supercritical Fluid Chromatography

Principles of Chromatography

116 Ansichten

article

11.1 : Chromatographische Methoden: Terminologie

Principles of Chromatography

445 Ansichten

article

11.2 : Chromatographische Methoden: Klassifikation

Principles of Chromatography

520 Ansichten

article

11.3 : Adsorption und Verteilung von Analyten

Principles of Chromatography

356 Ansichten

article

11.4 : Diffusion auf Chromatographiesäulen

Principles of Chromatography

222 Ansichten

article

11.5 : Chromatographische Auflösung

Principles of Chromatography

191 Ansichten

article

11.6 : Säuleneffizienz: Plattentheorie

Principles of Chromatography

234 Ansichten

article

11.7 : Säuleneffizienz: Ratentheorie

Principles of Chromatography

158 Ansichten

article

11.8 : Optimierung chromatographischer Trennungen

Principles of Chromatography

230 Ansichten

article

11.9 : Kieselgel-Säulenchromatographie: Überblick

Principles of Chromatography

657 Ansichten

article

11.10 : Dünnschichtchromatographie (DC): Überblick

Principles of Chromatography

649 Ansichten

article

11.11 : Gaschromatographie: Einführung

Principles of Chromatography

321 Ansichten

article

11.12 : Gaschromatographie: Arten von Säulen und stationären Phasen

Principles of Chromatography

215 Ansichten

article

11.13 : Gaschromatographie: Systeme zur Probeninjektion

Principles of Chromatography

213 Ansichten

article

11.14 : Gaschromatographie: Übersicht der Detektoren

Principles of Chromatography

197 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten