A voltage doubler circuit integrates two main components: a clamping section and a rectifier section. The clamping section consists of a capacitor (C1) and a diode (D1), whereas the rectifier section is equipped with another diode (D2) and capacitor (C2). This circuit produces an output voltage with twice the amplitude of the sinusoidal input voltage.
The circuit begins to operate when a sinusoidal input is introduced to the clamping section. Under ideal conditions, this section outputs a voltage waveform across diode D1, effectively clamping the positive peaks at zero volts and permitting the negative peak to achieve a magnitude that is twice that of the sinusoidal input's amplitude. This transformed waveform from the clamping section, then feeds into the rectifier section. Here, a remarkable transformation occurs, yielding a DC voltage across capacitor C2. This voltage mirrors twice the amplitude of the initial sinusoidal input providing the doubling effect that gives the circuit its name and marks its primary function.
The principle behind the voltage doubler is not only confined to doubling but can also be adapted to multiply the input voltage by higher factors, broadening its application scope. Voltage doublers are pivotal in various fields, finding their usage in scientific instruments, enhancing signal processing techniques, and serving as essential components in DC-DC converters within numerous electronic gadgets. This capability to efficiently double the voltage makes the voltage doubler circuit a cornerstone in electronic design and application.
Aus Kapitel 11:
Now Playing
Diodes
327 Ansichten
Diodes
530 Ansichten
Diodes
720 Ansichten
Diodes
404 Ansichten
Diodes
294 Ansichten
Diodes
383 Ansichten
Diodes
607 Ansichten
Diodes
198 Ansichten
Diodes
476 Ansichten
Diodes
486 Ansichten
Diodes
361 Ansichten
Diodes
274 Ansichten
Diodes
306 Ansichten
Diodes
222 Ansichten
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten